• Title/Summary/Keyword: Recycled material

Search Result 762, Processing Time 0.026 seconds

Analysis of Compression and Cushioning Behavior for Specific Molded Pulp Cushion

  • Jongmin Park;Gihyeong Im;Kyungseon Choi;Eunyoung Kim;Hyunmo Jung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.53-62
    • /
    • 2024
  • Molded pulp products has become more attractive than traditional materials such as expanded polystyrene foam (EPS) owing to low-priced recycled paper, environmental benefits such as biodegradability, and low production cost. In this study, various design factors regarding compression and cushioning characteristics of the molded pulp cushion with truncated pyramid-shaped structural units were analyzed using a test specimen with multiple structural units. The adopted structural factors were the geometric shape, wall thickness, and depth of the structural unit. The relative humidity was set at two levels. We derived the cushion curve model of the target molded pulp cushion using the stress-energy methodology. The coefficient of determination was approximately 0.8, which was lower than that for EPS (0.98). The cushioning performance of the molded pulp cushion was affected more by the structural factors of the structural unit than by the material characteristics. Repeated impacts, higher static stress, and drop height decreased the cushioning performance. Its compression behavior was investigated in four stages: elastic, first buckling, sub-buckling, and densification. It had greater rigidity during initial deformation stages; then, during plastic deformation, the rigidity was greatly reduced. The compression behavior was influenced by structural factors such as the geometric shape and depth of the structural unit and environmental conditions, rather than material properties. The biggest difference in the compression and cushioning characteristics of molded pulp cushion compared to EPS is that it is greatly affected by structural factors, and in addition, strength and resilience are expected to decrease due to humidity and repetitive loads, so future research is needed.

Effect of the Broken Red Bricks on the Mechanical Properties of Reinforced Concrete Beams (부순 적벽돌 혼입량에 따른 철근콘크리트 보의 역학적 특성에 관한 연구)

  • Kim, Jeong Sup;Shin, Yong Seok;Cho, Cheol Hee;No, Sung Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.83-90
    • /
    • 2008
  • The purpose of this study is to attempt to use broken red brick, which is categorized as impurities of circular aggregate to thick aggregate, as a replacement for concrete. Through the material test and performance test for each mixing rate of the broken red brick (0%, 30%, 60%), the following conclusion was reached by studying the material and structural characteristics of circular aggregate to the concrete. Even though broken red brick, which is categorized as impurities of circular aggregate, is mixed 30% with normal rubble, the compression strength, intensity strength, and curving strength was similar to that of concrete that uses normal rubble. Therefore, concrete beam made with broken red brick can be applied to the real construction field. Also, the study regarding the cutting test of the concrete that uses broken red brick and regarding applying and mixing admixture that can increase the ductility factor will be required in the future.

An analysis of the Domestic Interior Materials as the Ecological Design Aspects (친환경측면에서 본 국내 실내건축자재의 현황 조사 및 분석)

  • Chun Jin-Hie;Kim Jung-Ah
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.133-144
    • /
    • 2006
  • According to the latest report by the Customer Protection Board, those who moved into newly constructed buildings are complaining about unidentified pains, asking for more careful selection of constructive materials for prevention of such potential problems. It is internationally recognized today that ecological materials can serve a significant factor for users' health, environmental protection and better industrial competitiveness. This study examined eco-design aspects of each interior material through web site search, in order to help customers learn about and capitalize on eco materials in a proper manner. As a result, 1. It turned out that the domestic industry are giving an impetus to releasing new eco items focusing on lower VOCs emission or addition of functional components as part of the marketing strategy. However, it is recommended that company understand significance of life cycle, and produce eco-concept materials. 2. The reliable standard for choosing the domestic material is EL, HB, GR marks. It is desirable to enhance recycling technologies and expand the sustainable consumption. customer class, since many recycled items are not developed. 3. The sourcing is a vulnerable part in terms of the concept of being environment-friendly material. Therefore, many manufacturers should design the easy knock-down products and produce the good items using recycled materials instead of new raw materials. Also solutions for making the energy from burning material should be studied. 4. The guidebook or manual with correct information about eco-materials is required to promote production and consumption with sustainable concept. 5. Many manufacturers are emphasizing ecological materials for customers, but some of them intended to disrupt customers' proper selection by promoting even unverified items to be environment-friendly.

  • PDF

A Study on the Reinforcement Effect Analysis of Aging Reservoir using Grout Material recycled Power Plant Byproduct (발전부산물을 재활용한 그라우트재의 노후 저수지 보강효과 분석에 관한 연구)

  • Seo, Se-Gwan;An, Jong-Hwan;Cho, Dae-sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.23-33
    • /
    • 2021
  • In Korea, many reservoirs have been built for the purpose of solving the food shortage problem and supplying agricultural water. However, the current 75.6% of the reservoirs are in serious aged as more than 50 years have passed since the year of construction. In the case of such an aging reservoir, the stability due to scour and erosion inside the reservoir is very reduced, and if concentrated rainfall due to recent abnormal weather occurs, the aging reservoir may collapse, leading to a lot of damage to property and human life. Accordingly, each agency that manages aging reservoirs uses Ordinary Portland Cement (OPC) as an injection material and applies the grouting method. However, in the case of OPC, it may deteriorate over time and water leakage may occur again. And there are environmental problems such as consumption of natural resources and generation of greenhouse gases. So, there is a need to develop new materials and methods that can replace the OPC. In this study, an laboratory test and analysis were performed on the grout material developed to induce a curing reaction similar to that of OPC by recycling power plant byproduct. In addition, test in the field such as electric resistivity survey, Standard Penetration Test (SPT), and field permeability test were performed to analyzed to reinforcement effect and determine the possibility of using instead of OPC. As a results of the test, in the case of recycled power plant byproduct, the compressive strength was 2.9 to 3.2 times and the deformation modulus was 2.3 to 3.3 times higher, indicating that it is excellent in strength and can be used instead of OPC. And it was analyzed that the N value of the reservoir was increased by 1~2, and the coefficient of permeability (k) decreased to the level of 8.9~42.5%. showing sufficient reinforcing effect in terms of order.

Preparation and Mechanical Properties of Bulk Molding Compound Composite Prepared using Recycled FRP Waste Powder (폐FRP 미분말을 재활용한 BMC 복합재료의 제조 및 기계적 물성)

  • Hwang, Eui-Hwan;Jeon, Jong-Ki
    • Applied Chemistry for Engineering
    • /
    • v.21 no.2
    • /
    • pp.217-223
    • /
    • 2010
  • In general, fiber-reinforced plastics (FRP) wastes are simply buried or burned. Landfill brings about a permanent contamination of soil due to the inability of FRP to decompose and incineration causes an issue of generating toxic gases and dusts. There have been several ways to treat the FRP wastes such as landfill, incineration, chemical recycling, material recycling and the utilization of energy from combustion. Most methods excluding material recycling are known to have critical limitations in economic, technical and environmental manners. However it is known that material recycling is most desirable among the methods handling FRP wastes. In this study, to investigate the purpose of feasibility of material recycling, various bulk molding compound (BMC) specimens were prepared with the various contents of unsaturated polyester resin binder (25, 30, 35 wt%) and the various replacement ratios of FRP wastes powder (0, 25, 50, 75, 100 wt%) substituted for filler. To evaluate the physical properties BMC specimens, various tests such as tensile strength, flexural strength, impact strength, hot water resistance and SEM imaging were conducted. As a results, mechanical strengths decreased with an increase of replacement ratio of FRP waste powder and physical properties of BMC specimens were deteriorated in the hot water resistance. The fluidity of BMC with more than 50 wt% of the replacement ratio of FRP wastes powder decreased remarkably, causing a problem in the BMC composite.

Material Performance Evaluation of Ceramic Fiber Reinforced Concrete using Energetically Modified Industrial By-products (산업부산물의 활성분체 및 세라믹섬유 혼입 콘크리트의 재료성능 평가)

  • Choi, Seung Jai;Yang, Dal Hun;Lee, Tae Hee;Kim, Jang Ho Jay
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.118-124
    • /
    • 2018
  • Social infrastructures and industrial complexes have been actively constructed in South Korea since the 1960 s as part of the economic development plan, resulting in rapid industrialization. However, side-effects due to the industrialization have occurred. An increase in industrial by-products or wastes is a typical problem. Although some industrial by-products are recycled in Korea as well as worldwide, some wastes are landfilled or dumped in the sea. Although many researchers have executed various technologies for the disposal of industrial wastes, economic and environmental technologies have not been developed. Thus, this study aims to activate paper and fly ashes during the crush process to overcome the drawback of simple concrete mixed with paper and fly ashes, which cause a reduction in workability and strength, derive an optimal content and replacement ratio of concretes mixed with Energetically Modified Material (EMM), and evaluate the material performance. In addition, the basalt fiber is mixed simultaneously to achieve the reduction of cracks and improve the tensile strength.

Development of Geopolymer Mortar Based on Fly Ash (플라이애시 기반 지오폴리머 모르타르 개발)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.119-126
    • /
    • 2012
  • Portland cement production-1.5billion tonnes yearly worldwide-contributes substantially to global atmospheric pollution(7% of total of $CO_2$ emissions). Attempts to increase the utilization of fly ash, by-products from thermal power plant to partially replace the cement in concrete are gathering momentum. But most of fly ash is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the compressive strength of mortar on alkaline activator and curing condition in oder to develop cementless fly ash based alkali-activated concrete. In view of the results, we found out that it was possible for us to make alkali-activated mortar with 70MPa at the age of 28days by using alkaline activator manufactured as 1:1 the mass ratio of 9M NaOH and sodium silicate and applying the atmospheric curing after high temperature at $60^{\circ}C$ for 48hours.

  • PDF

Application of Screenings by-product of Crushing Rock in Quarry as Lean Concrete Pavement (산업부산물인 스크리닝스의 활용도 증진을 위한 린콘크리트 적용성 평가)

  • Kang, Min-Soo;Lee, Kyung-Ha;Suh, Young-Chan;Kim, In-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.75-81
    • /
    • 2012
  • In case of crushing rock to produce materials for lean concrete subbase layer in concrete pavement, natural sand is used for the gradation adjustment of aggregates, and the percentage of natural sand used is 30%~40% of the weight ratio of aggregate mix. The supply of natural sand that is used in lean concrete as a fine aggregate is getting harder due to the current of exhaustion of source, and the cost for the purchase of natural sand is included in the cost of roadway construction. This study, therefore, was conducted in order to resolve the exhaustion of materials and economize in construction expenditure by the application of screenings, which is by-product of crushing rock in quarry, as an alternative to natural sand. As a result of a comparative analysis on the application of screenings and natural sand with typical types of rock that is produced in domestic, which was conducted in the first year, It is found out that the use of screenings as a fine aggregate showed better unconfined compression strength. Verification of actual application of screenings was conducted in the second year, after test construction and follow-up investigation. The compressive strength, compaction density, settlement of screenings applied case was higher than that of natural sand. Thus, it is expected that application of screenings to construction in field will contribute to the cost saving, material recycling and the protection of environment.

  • PDF

Evaluation of Effectiveness of Concrete Coated with Bacterial Glycocalix under Simulated Sewage Environments (유사 하수환경에서 글라이코 캘릭스 코팅 콘크리트의 효율성 평가)

  • Yoon, Hyun-Sub;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.97-104
    • /
    • 2020
  • The present study conducted mock-up tests under the simulated sewage environments to examine the practical significance and limitation of coating materials that were previously developed on the basis of the bacterial glycocalix as a protection of concrete structures exposed to microbiological and sulphate attacks. The variations of the compressive strength and mass of the concrete due to the sulphate attack were measured using cylinder specimens. The bacteria growth and glycocalix formulation were calculated from the samples extracted from the sewage pipes. The next generation sequencing analysis was also conducted for environmental damage assessment due to the use of Rhodobacter capsulatus in the simulated sewage environments. The mock-up tests revealed that the developed coating materials have a good potential in resisting the sulphate attack, indicating no reduction on compressive strength and mass of the coated concrete under the sewage environment. At the age of 91 days, the concentrations of viable bacteria and glycocalix measured from the hardened coating materials were 1.4×104cell/mL and 67.5mg/㎤, respectively. Moreover, harmful strains were not observed in the sewage water including glycocalix-coated concrete pipes. This implies that Rhodobacter capsulatus used in the coating materials does not influence negatively the microorganism cluster in the sewage environments.

An Experimental Study on the Quality of Concrete with Municipal Solid Waste Incineration Ash (쓰레기 소각재 사용 콘크리트의 품질특성에 대한 실험적 연구)

  • Kim, Jae-Woo;Choi, Jae-Jin;Moon, Dae-Joong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.335-344
    • /
    • 2014
  • The Quality of municipal solid waste incineration ash (incineration ash) was analyzed for the purpose of the reusing for concrete material. The folwability and strength properties of concrete mixed with incinerator ash were investigated. CaO component was included more than 50% in chemical component of incinerator ash, mean size of 50% accumulated particle distribution of incinerator ash was about $25{\mu}m$. Particle shape of incinerator ash ($IA_1$) was massed the round shape with fine particle, particle shape of incinerator ash ($IA_2$) was piled up the sheet shape according to manufacture procedure. The Quality of concrete was effected by use of incinerator ash. When the incinerator Ash ($IA_2$) was used, slum of concrete was increased and dosage of high range water reducing agent was reduced. However, strength development of concrete was decreased. Dosage of high range water reducing agent was increased by combined use of incinerator ash ($IA_2$) and diatomite powder, but strength development of concrete was improved. Ratio of compressive strength and tensile strength was in the range 85%~105% of CEB-FIP model code.