• Title/Summary/Keyword: Recycled material

Search Result 757, Processing Time 0.03 seconds

Shear Performance of Full-scale Reinforced Concrete Beams with Recycled Fine Aggregates (순환잔골재의 치환율에 따른 철근콘크리트 보의 전단성능)

  • Ji, Sang-Kyu;Song, Seon-Hwa;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.205-208
    • /
    • 2008
  • Using the recycled aggregate can reduces the landfill space, the demand for natural raw material for new construction. Some investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates. But these have some limitation due to the use of low quality recycled aggregates and small-scale specimens in the laboratory. In this study, four full-scaled RC beams were tested to evaluate the effects of replacement level (0,30, 60, and 100%) of recycled fine aggregate on shear behavior of RC beams. The results showed that the beams with recycled fine aggregates show similar crack pattern and failure mode compared with the beam with natural aggregate. Also, the beams with recycled fine aggregates present the similar shear strength except the one with the replacement level of 100% recycled fine aggregates. Shear strength were compared with the provisions in current code (KCI2007) and the equation proposed by Zsutty. The KCI equations were conservative and subsequently can be used for the shear design of recycled aggregate concrete beam.

  • PDF

Recycled Concrete Aggregates: A Review

  • McNeil, Katrina;Kang, Thomas H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.1
    • /
    • pp.61-69
    • /
    • 2013
  • This paper discusses the properties of RCA, the effects of RCA use on concrete material properties, and the large scale impact of RCA on structural members. The review study yielded the following findings in regards to concrete material properties: (1) replacing NA in concrete with RCA decreases the compressive strength, but yields comparable splitting tensile strength; (2) the modulus of rupture for RCA concrete was slightly less than that of conventional concrete, likely due to the weakened the interfacial transition zone from residual mortar; and (3) the modulus of elasticity is also lower than expected, caused by the more ductile aggregate. As far as the structural performance is concerned, beams with RCA did experience greater midspan deflections under a service load and smaller cracking moments. However, structural beams did not seem to be as affected by RCA content as materials tests. Most of all, the ultimate moment was moderately affected by RCA content. All in all, it is confirmed that the use of RCA is likely a viable option for structural use.

Development of A Recycling Process for Waste FRP from Boats (선박용 폐 FRP 수지의 재활용 공정 개발)

  • 강세란;김영우;황덕기;김시영;이민규;주창식
    • Journal of Environmental Science International
    • /
    • v.12 no.6
    • /
    • pp.635-641
    • /
    • 2003
  • A recycling process for the waste FRP from boats was developed. The recycling process is composed of decomposition of waste FRP with propylene glycol and synthesis of recycled unsaturated polyester resin from the decomposed liquid material. Prior to the decomposition, waste FRP was cut into 2cm x 5cm segments and mechanical impact was applied by press roller to give gaps between cumulated laminates. Propylene glycol effectively decomposed the waste FRP segments and glass fibers were easily separated from decomposed liquid material. Recycled unsaturated polyester resin could be made from the decomposed liquid material by reaction with maleic anhydride and phthalic anhydride.

Experimental Study on Fire Resistant Capacity and Thermal Conduction of Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 화재내력 및 단열성에 관한 실험적 연구)

  • Choi, Jea-Nam;Hong, Se-Hwa;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.121-128
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. In addition, thermal conduction test was tested in order to find out concrete insulation. According to this test, when concrete was tested by fire resistance, it using the circulation aggregate was same resulted by concrete using the natural aggregate. also, recycle powder was not effecting insulation performance. but it is fit to standard on concrete insulation of building law.

Evaluation of the Dynamic Stiffness and Heavy-weight Floor Impact Sound Reduction by Composition of Resilient Materials (완충재 구성방법에 따른 동탄성계수 및 중량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Jeong, Gab-Cheol;Sohn, Jang-Yeul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.247-254
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS(styrofoam), recycled urethane types, EVA(ethylene vinylacetate) foam rubber, foam PE(polyethylene). glass fiber & rock wool, recycled tire, foam polypropylene. compressed polyester, and other synthetic materials. In this study, we tested dynamic stiffness of resilient material and floor impact sound reduction characteristic to a lot of kinds of resilient materials. It was found that dynamic stiffness of multi-layered damping material could be estimated if know value of each layer that compose whole structure. And the test showed that the amount of the heavy-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. The dynamic stiffness looked like between other resilient materials, a similar to the amount of the heavy-weight impact sound reduction was shown.

An Analysis of the Shear Strength of Reinforced Concrete Beams with Recycled Coarse Aggregates (순환굵은골재 철근 콘크리트 보의 전단강도 분석)

  • Ji, Sang-Kyu;Yun, Hyun-Do;Song, Seon-Hwa;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.851-854
    • /
    • 2008
  • Using the recycled aggregate not only saves landfill space but also reduces the demand for extraction of natural raw material for new construction activity. However few investigations have been carried out to study the shear behaviors of RC beams with recycled aggregates such as low absorption of recycled aggregate and full-scale specimens. In this study, six reinforced concrete beams were tested to evaluate the effects of shear strength, and shear behavior on the replacement level (0, 30, 60, and 100%) of recycled coarse aggregate and different amounts of shear reinforcement. The results showed that the beams with recycled coarse aggregates present the similar shear strength and deflections as the beam with natural aggregate on an equal amount of shear reinforcement. the reinforced concrete beams with recycled coarse aggregates present the Influence of shear span-to-depth ratio, effective depth, tension reinforcement ratio and compressive strength as the beams with natural aggregate. Shear strength were compared with the provisions in current code (KCI2007) and the equation proposed by Zsutty. The KCI equations were conservative and subsequently can be used for the shear design of recycled aggregate concrete beam.

  • PDF

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.

Chemical Resistance of Recycled Aggregate Concrete Using Pozzolanic Materials (포졸란 재료와 순환골재를 사용한 콘크리트의 화학약품 저항성)

  • Moon, Dae-Joong;Choi, Jae-Jin;Kim, Wan-Jong;Kim, Hak-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.3
    • /
    • pp.63-69
    • /
    • 2010
  • This study investigates the chemical resistance of the recycled aggregate concrete containing calcined ground slag, fly ash, and diatom powder. The recycled aggregate which had the density of $2.48g/cm^3$, the absorption of 4.25%, and standard gradation was used and the concrete specimens were submerged in solutions of $Na_2SO_4$ and $CaCl_2$ at 10% concentration for 6 months. As the submersion result, pore volume of over $0.02{\mu}m$ diameter was formed less in the concrete specimens containing calcined ground slag, fly ash, and diatom powder than in the concrete without the pozzolanic materials and the result shows the effectiveness of the pozzolanic materials for the increase of chemical resistance of the recycled aggregate concrete.

  • PDF

Durability Performances of Concrete Produced with Recycled Bio-Polymer Based on Sargassum Honeri (괭생이모자반 기반의 자원순환형 바이오 폴리머를 혼입한 콘크리트의 내구성능)

  • Lee, Byung-Jae;Lee, Sun-Mok;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.445-451
    • /
    • 2019
  • In this study, we evaluated the durability of concrete produced with recycled polymer that could replace synthetic polymer, which is the main raw material of bridge deck concrete pavement. As a result of the slump and air content test, the requirements of the Korea Highway Corporation Standard were satisfied with all mixing conditions. The slump was lowered when incorporating the recycled bio-polymer, compared to other mix proportions concrete. In contrast, the compressive strength was increased by 6.3~24.4% when the recycled bio-polymer was mixed, compared to the concrete produced with synthetic polymer. It should be noted that the compressive strength was lowered when synthetic polymer was added to concrete mixture. Durability test results showed the best durability when incorporating synthetic polymer. The durability of concrete also increased as the amount of recycled bio-polymer increased, however, the impact was slightly smaller than that of synthetic polymer.

Manufacturing Characteristics of Boards Recycling Waste Wood Particle (폐목재파티클을 이용한 재생보드의 제조특성)

  • Kim, Wae-Jung;Suh, Jin-Suk;Han, Tae-Hyung;Park, Jong-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.1
    • /
    • pp.120-127
    • /
    • 2006
  • The hammer-milled characteristics of waste wood materials such as lumber, plywood, particleboard(PB), MDF and railroad tic were investigated in this study. The physical and mechanical properties of recycled boards according to types of recycled particle and the mixing ratios were also studied. The hammer-milled, waste wood materials had the dimensional distributions suitable for the core layer panicle. Bending strengths of recycled boards (one layer) were shown in order of plywood, PB(laboratory-fabricated with particles used in the PB factory), lumber, tego film-overlaid plywood, MDF, waste railroad tie, PB(factory-made) and LPL-overlaid PB. Cured resin and creosote containing waste wood contributed to dimensional stability of reconstituted boards. Considering the mixing effects between lumber and plywood with recycled PB particle, lumber particle was contributive to bending strength, MOE and internal bond(IB) strength, whereas plywood particle was contributive to dimensional stability. The bending and IB strength of 3 layer boards composing only recycled waste wood particles in core layer of board were in order of lumber, plywood, PB and MDF. On the other hand, the thickness swelling was in order of PB, lumber, plywood and MDF. Bending strength of the 3 layer boards mixed with recycled PB-particle in the core layer had a decreasing tendency, as the mixing ratios of recycled PB-particles increased. The dimensional stability of 3 layer recycled board was improved as the mixing ratio of recycled PB-particle increased same as in one layer. Formaldehyde emission of boards fabricated with recycled PB-particles in the core layer of the PB was in the range of E2 grade (below 5.0mg/l).

  • PDF