• 제목/요약/키워드: Recycled concrete

검색결과 1,413건 처리시간 0.022초

탄산화 개질 순환 골재를 사용한 순환 골재 콘크리트의 성능 평가 (Performance Evaluation of Recycled Aggregate Concrete Made of Recycled Aggregate Modified by Carbonation)

  • 하정수;신진학;정란;김한식
    • 콘크리트학회논문집
    • /
    • 제28권4호
    • /
    • pp.445-454
    • /
    • 2016
  • 노후 시설물의 증가에 따라 건설폐기물은 일정 수준까지 증가한 이후, 현재는 어느 정도 안정화 된 추세에 있지만, 전체폐기물 중에서 건설폐기물은 아직까지도 가장 큰 비중을 차지하고 있다. 또한, 천연 골재 채취 금지에 의한 골재 난 심화 및 골재 공급원 개발에 의한 국토훼손과 자연환경 파괴 등에 따라 환경복원에 막대한 국가예산 소요가 불가피한 상황이다. 이에 대한 대책 방안으로 국토교통부는 순환 골재 품질기준을 공포하여 순환 골재 품질에 따른 용도와 관리를 할 수 있도록 추진하고 있으나, 경제적 부가가치가 높은 용도로의 활용은 아직 저조한 실정이다. 따라서, 본 연구에서는 저자의 선행연구에서 제시한 탄산화 개질 조건인 $20^{\circ}C$, RH 60%, $CO_2$ 20%에서 순환 잔골재 4일, 순환 굵은 골재 14일간 탄산화를 실시한 순환 골재의 품질개선효과 및 이를 이용한 순환 골재 콘크리트의 성능 평가를 통하여 구조용 콘크리트로의 적용 가능성에 대한 실마리를 찾고자 한다. 그 결과, 탄산화 개질을 통하여 순환 잔골재의 흡수율이 0.91%, 순환 굵은 골재의 흡수율이 0.7% 저감되어 품질개선에 기여하였다. 또한, 탄산화 개질 골재를 이용한 순환 골재 콘크리트의 물리적 특성 및 내구성능이 일반 콘크리트와 유사한 결과를 나타내어 구조용 콘크리트로의 적용 가능성을 확인하였다.

강섬유 혼입 순환골재 콘크리트의 구조적 특성에 관한 연구 (A Study on the Structural Characteristic of Recycled Aggregate Concrete Reinforced Steel Fiber)

  • 김정섭;신용석;박영배;김정훈;조창호
    • 한국건축시공학회지
    • /
    • 제8권5호
    • /
    • pp.35-42
    • /
    • 2008
  • In this study, a sample was fabricated according to the recycled aggregate replacement level(0%, 30%, 60%), and the steel fiber mixing status in order to use recycled aggregate as a concrete alternative coarse aggregate, and then the materials and structural characteristics of recycled aggregate and steel fiber which impacted the reinforced concrete were analyzed. A conclusion was derived as follows. After considering the results of various material experiments and mock-up test, when a flexural strength and a ductility factor is increased and the replacement level is increased through mixing the steel fiber with the recycled aggregate concrete, the ductility and flexural strength reduction seems to be inhibited by adding the steel fiber. Also, it is indicated that the recycled aggregate has almost-similar compressive strength, tensile strength flexural strength and ductility capacity to the concrete which using the general gone even though the steel fiber is used and the replacement level is increased to 30%. Accordingly, the reinforced concrete frame using the steel fiber mixture and recycled aggregate seems to apply to the actual structure.

Pull-out behaviour of recycled aggregate based self compacting concrete

  • Siempu, Rakesh;Pancharathi, Rathish Kumar
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.249-259
    • /
    • 2018
  • The use of recycled aggregate in concrete is gaining much attention due to the growing need for sustainability in construction. In the present study, Self Compacting Concrete (SCC) is made using both natural and recycled aggregate (crushed recycled concrete aggregate from building demolished waste) and performance of recycled aggregate based SCC for the bond behaviour of reinforcement is evaluated. The major factors that influence the bond like concrete compressive strength (Mix-A, B and C), diameter of bar ($D_b=10$, 12 and 16 mm) and embedment length of bar ($L_d=2.5Db$, $5D_b$ and full depth of specimen) are the parameters considered in the present study in addition to type of aggregates (natural and recycled aggregates). The mix proportions of Natural Aggregate SCC (NASCC) are arrived based on the specifications of IS 10262. The mix proportions also satisfy the guidelines of EFNARC. In case of Recycled Aggregate SCC (RASCC), both the natural coarse and fine aggregates are replaced 100% by volume with that of recycled aggregates. These mixes are also evaluated for fresh properties as per EFNARC. The hardened properties like compressive strength, split tensile strength and flexural strength are also determined. The pull-out test is conducted as per the specifications of IS 2770 (Part-1) for determining the bond strength of reinforcement. Bond stress versus slip curves were plotted and a typical comparison of RASCC is made with NASCC. The fracture energy i.e., area under the bond stress slip curve is determined. With the use of recycled aggregates, reduction in maximum bond stress is noticed whereas, the normalised maximum bond stress is higher in case of recycled aggregates. Based on the experimental results, regression analysis is conducted and an equation is proposed to predict the maximum bond stress of RASCC. The equation is in good agreement with the experimental results. The available models in the literature are made use to predict the maximum bond stress and compare the present results.

Punching shear behavior of recycled aggregate concrete

  • Dan, Saikat;Chaudhary, Manpreet;Barai, Sudhirkumar V.
    • Computers and Concrete
    • /
    • 제21권3호
    • /
    • pp.321-333
    • /
    • 2018
  • Flat-slabs, being a significant structural component, not only reduce the dead load of the structure but also reduce the amount of concrete required for construction. Moreover the use of recycled aggregates lowers the impact of large scale construction to nearby ecosystems. Recycled aggregate based concrete being a quasi-brittle material shows enormous cracking during failure. Crack growth in flat-slabs is mostly in sliding mode (Mode II). Therefore sufficient sections need to be provided for resistance against such failure modes. The main objective of the paper is to numerically determine the ultimate load carrying capacity of two self-similar flat-slab specimens and validate the results experimentally for the natural aggregate as well as recycled aggregate based concrete. Punching shear experiments are carried out on circular flat-slab specimen on a rigid circular knife-edge support built out of both normal (NAC) and recycled aggregate concrete (RAC, with full replacement). Uniaxial compression and bending tests have been conducted on cubes, cylinders and prisms using both types of concrete (NAC and RAC) for its material characterization and use in the numerical scheme. The numerical simulations have been conducted in ABAQUS (a known finite element software package). Eight noded solid elements have been used to model the flat slab and material properties have been considered from experimental tests. The inbuilt Concrete Damaged Plasticity model of ABAQUS has been used to monitor crack propagation in the specimen during numerical simulations.

랜덤입사방법에 의한 포러스 콘크리트의 흡음특성에 관한 실험적 연구 (The Study on Sound Absorbing Characteristics of Porous Concrete according to Reverberation Room Methods)

  • 서대석;박승범;조광연;장영일;김형석;이윤선
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.568-571
    • /
    • 2004
  • This research estimated the physical. mechanical characteristic and the character of sound absorption according to target void ratio of porous concrete and the mixing ratio of recycled aggregate for the valid utilization of recycled aggregate using waste concrete and sound reduction out of a road, a railway, a residential street, and a downtown area. As a result of the test, compressive strength tended to be a radical strength fall when target void ratio was $25\%$ and contents of recycled aggregate exceeded over $50\%$. Also, the character of sound absorption of porous concrete which used recycled aggregate using waste concrete was the most excellent when target void ratio was $25\%$, and the influence by contents of recycled aggregate was trivial. Therefore, when the strength and the character of sound absorption of porous concrete are considered, it is proved valid that proper target void ratio was $25\%$ and contents of recycled aggregate using waste concrete was $50\%$ or so.

  • PDF

녹색자연환경 보존을 위한 지속가능한 자원순환시스템 콘크리트 (Using Recycled Aggregates in Sustainable Resource Circulation System Concrete for Environment Preservation)

  • 이영주;장정권;김윤일;임칠순
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2010년도 춘계 학술논문 발표대회 1부
    • /
    • pp.57-61
    • /
    • 2010
  • In this study, many concrete specimens were tested to investigate the variations of strength characteristics of high-strength concrete due to amount of recycled coarse aggregates, and to investigate the effect of steel-fiber reinforcement on concrete using recycled coarse aggregates. Test results showed that all of the variations of compressive, tensile and flexural strength appeared in linear reduction according to icrease the amount of recycled coarse aggregates, and steel-fiber reinforcement of 0.75% volumn of concrete recovered completely spliting tensile strength and flexual strength and recovered greatly compressive strength of concrete using recycled coarse aggregates of 100% displacement. And test results showed that the shear strength falled rapidly at 30% of replacement ratio so far as 34% of strength reduction ratio, but after that it falled a little within 3% up to the replacement ratio 100%, and steel-fiber reinforcement of 0.75% of concrete volumn recovered completely the deteriorated shear strength, moreover improved the shear strength above 50% rather than that of concrete using natural coarse aggregates.

  • PDF

표면처리방법을 이용한 순환 굵은골재의 물성 평가 및 순환골재 콘크리트의 특성 연구 (A Study on the Property Estimation of Recycled Coarse Aggregate and Characteristic of Recycled Aggregate Concrete Using the Surface Coated Treatment Method)

  • 김남욱;김혁중;배주성
    • 대한토목학회논문집
    • /
    • 제28권4A호
    • /
    • pp.603-609
    • /
    • 2008
  • 폐콘크리트로부터 생산되는 순환골재는 천연골재에 비해 품질이 나쁜 단점이 있어 이를 개선하는 것이 순환골재를 재활용하는데 있어서 선결과제라 할 수 있다. 본 연구에서는 콜로이달 실리카용액을 이용한 표면처리 방법으로 순환골재의 품질을 개선하고, 품질이 개선된 표면처리 순환골재를 활용한 콘크리트의 역학적 특성 및 내구성능을 타 콘크리트와 비교 분석하여 순환골재를 실제 콘크리트 시설물 축조에 콘크리트용 골재로서 활용 가능성을 규명하고자 한다.

순환굵은골재 치환율에 따른 콘크리트의 압축파괴 및 음향방출특성 (The Effect of Recycled Coarse Aggregates Replacement Level on Localized Fracture and Acoustic Emission of Concrete in Compression)

  • 김윤수;윤현도;유영찬
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.249-252
    • /
    • 2006
  • When concrete is subjected to uniaxial compression, the failure process is normally initialed from a localized zone. The localization of failure governs structural behaviors of concrete. In this paper, the compressive strength and failure behavior of recycled coarse aggregate concrete with different replacement level of recycled coarse aggregates are investigated using acoustic emission(AE). AE characteristics of concrete were investigated during the entire loading period. For these purpose, four recycled coarse aggregate replacement level (i.e 0%, 30%, 60% and 100%) were considered in this paper. Result from this study show AE signal, AE method can apply to investigate a compressive failure mode according to recycled coarse replacement level.

  • PDF

비세척된 재생 조골재 콘크리트의 강도특성 (Strength Properties of Concrete using Non-Washed Recycled Coarse Aggregate)

  • 윤현도;김문섭;임경택;정수영;윤석천
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.489-494
    • /
    • 1998
  • This paper describes the possibility to reuse concrete waste produced by demolition of reinforced concrete structures as aggregate for concrete from the viewpoint of strength. Concrete rubble obtained from the demolished buildings at Taejon were crushing machine to reuse as coarse aggregate. The strength properties, such as compressive strength, splitting tensile strength, bending strength and shear strength, of recycled and normal concrete were examined and compared experimentally when water cement ratio was varied. From the results of this study, it was thought that in case of non-washed aggregate concrete, strength properties of recycled coarse aggregate is similar to that of normal concrete, In W/C 55%~45%, stress-strain curve of recycled concrete shows more stable than that of normal concrete, while in W/C 35%, it shows brittle behavior.

  • PDF

조강시멘트와 순환골재를 적용한 콘크리트의 증기양생조건별 압축강도 특성 (Compressive Strength Properties of Concrete Using High Early Strength Cement and Recycled Aggregate with Steam Curing Conditions)

  • 김용재;김승원;박철우;심종성
    • 한국건설순환자원학회논문집
    • /
    • 제4권1호
    • /
    • pp.76-81
    • /
    • 2016
  • 순환골재는 천연골재가 부족한 국내에서 매우 유용한 골재자원이며, 정부에서도 이러한 중요성을 인식하고 순환골재의 고부가가치 활용을 위한 다양한 정책을 제안하고 있다. 그러나 현재 국내에서 생산되는 순환골재는 대부분 성토, 매립 등 저부가가치의 용도로 활용되고 있으며 구조용 부재와 같은 고부가가치 활용은 아직 이루어지지 않고 있다. 국내 순환골재 생산기술은 세계적인 수준임에도 불구하고 순환골재콘크리트의 구조용 부재적용은 아직 이루어지지 않고 있으며 이는 순환골재의 표면에 부착된 부착모르타르와 순환골재의 생산과정에서 발생되는 균열로 인해 순환골재콘크리트의 품질을 예측하고 조절하기 어렵기 때문인 것으로 판단된다. 본 연구에서는 순환골재콘크리트의 현장적용성 증진을 위한 일환으로 순환골재, 조강시멘트, 증기양생 최고온도 및 최고온도 지속시간이 순환골재콘크리트에 미치는 영향을 분석하고자 하였다.