• Title/Summary/Keyword: Recycled aggregates

Search Result 485, Processing Time 0.026 seconds

Mechanical properties of sustainable green self-compacting concrete incorporating recycled waste PET: A state-of-the-art review

  • Shireen T. Saadullah;James H. Haido;Yaman S.S. Al-Kamaki
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.35-57
    • /
    • 2023
  • Majority of the plastic produced each year is being disposed in land after single-use, which becomes waste and takes up a lot of storage space. Therefore, there is an urgent need to find alternative solutions instead of disposal. Recycling and reusing the PET plastic waste as aggregate replacement and fiber in concrete production can be one of the eco- friendly methods as there is a great demand for concrete around the world, especially in developing countries by raising human awareness of the environment, the economy, and Carbon dioxide (CO2) emissions. Self-compacting concrete (SCC) is a key development in concrete technology that offers a number of attractive features over traditional concrete applications. Recently, in order to improve its durability and prevent such plastics from directly contacting the environment, various kinds of plastics have been added. This review article summarizes the latest evident on the performance of SCC containing recycled PET as eco-friendly aggregates and fiber. Moreover, it highlights the influence of substitution content, shape, length, and size on the fresh and properties of SCC incorporating PET plastic. Based on the findings of the articles that were reviewed for this study, it is observed that SCC made of PET plastic (PETSCC) can be employed in construction era owing to its acceptable mechanical and fresh properties. On the other hand, it is concluded that owing to the lightweight nature of plastic aggregate, Reusing PET waste in the construction application is an effective approach to reduces the earthquake risk of a building.

A Study on the Influence of the Number of Re-crushing with regard to the physical Properties of Recycled Coarse Aggregates (재생조골재의 물리적 특성에 미치는 재파쇄회수의 영향에 관한 연구)

  • Choe, Min-Su;Kim, Mu-Han;Namba, Atsushi;Abe, Michihiko
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.160-163
    • /
    • 1995
  • 본 硏究는 現在 일상적 있는 재생조골재를 죠오크러져(modified-jaw crusher)를 이 용하여 다시 1-3 파쇄를 행함으로써 재생골재의 품질이 어느정도 개량될 수 있는가를 실험 적으로 구명하여 재생골재의 실용화를 위한 하나의 방법을 제한하고자 하는 것이다. 실험결 과,재화파생 처리를 행하지 않은 경우의 재생근 골재의 흡수율은 5-7%정도이나 재파쇄를 함에 따라 흡수율은 현저하게 낮아져, 3차례의 재파쇄를 행한 경우 흡수율이 2% 이래로 나 타나 재생근골재의 품질을 학보하기 위하여는 재파쇄가 매우 유용한 방법임을 알 수 있었 다. 또한 흡수율의 본포도 처음에는 2개의 범주를 가지고 넓게 산포하게 되나 재파쇄가 진 행될수록 재생근골재중에 부착되어 있던 모르터분이 점차 떨어져 나감에 따라 품질의 산포 가 상당히 낮아지는 결과를 얻었다. 그러나 이와같은 재파쇄에는 많은 실용적 부담이 발생 하게 되므로 골재의 품질과 경제적효율을 고려하여 정적한 재파쇄회수가 결정되어야 할 것 으로 사료 된다.

  • PDF

Producing synthetic lightweight aggregates by treating waste TFT-LCD glass powder and reservoir sediments

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.13 no.3
    • /
    • pp.325-342
    • /
    • 2014
  • The use of lightweight aggregate (LWA) instead of ordinary aggregate may make lightweight aggregate concrete, which possesses many advantages such as lightweight, lower thermal conductivity, and better fire and seismic resistance. Recently the developments of LWA have been focused on using industrial wastes as raw materials to reduce the use of limited natural resources. In view of this, the intent of this study was to apply Taguchi optimization technique in determining process condition for producing synthetic LWA by incorporating waste thin film transition liquid crystal displays (TFT-LCD) glass powder with reservoir sediments. In the study the waste TFT-LCD glass cullet was used as an additive. It was incorporated with reservoir sediments to produce LWA. Taguchi method with an orthogonal array L16(45) and five controllable 4-level factors (i.e., cullet content, preheat temperature, preheat time, sintering temperature, and sintering time) was adopted. Then, in order to optimize the selected parameters, the analysis of variance method was used to explore the effects of the experimental factors on the performances (particle density, water absorption, bloating ratio, and loss of ignition) of the produced LWA. The results showed that it is possible to produce high performance LWA by incorporating waste TFT-LCD glass cullet with reservoir sediments. Moreover, Taguchi method is a promising approach for optimizing process condition of synthetic LWA using recycled glass cullet and reservoir sediments and it significantly reduces the number of tests.

Performance Evaluation of High-RAP Asphalt Mixtures using Rapid-Setting Polymer-Modified Asphalt Emulsion (긴급보수용 개질 유화아스팔트 고비율 순환골재를 사용한 상온 아스팔트 혼합물의 성능 평가)

  • Kwon, Bong Ju;Heo, Jae Min;Han, Yong Jin;Rhee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.17 no.2
    • /
    • pp.21-30
    • /
    • 2015
  • PURPOSES : The purpose of this study was to evaluate the performance of rapid-setting polymer-modified asphalt mixtures with a high reclaimed asphalt pavement (RAP) content. METHODS: A literature review revealed that emulsified asphalt is actively used for cold-recycled pavement. First, two types of rapid-setting polymer-modified asphalt emulsion were prepared for application to high-RAP material with no virgin material content. The quick-setting polymer-modified asphalt mixtures using two types of rapid-setting polymer-modified asphalt emulsion were subjected to the following tests: 1) Marshall stability test, 2) water immersion stability test and 3) indirect tensile strength ratio test. RESULTS AND CONCLUSIONS : Additional re-calibration of the RAP was needed for laboratory verification because the results of analyzing RAP aggregates, which were collected from different job sites, did not deviate from the normal range. The Marshall stability of each type of binder under dry conditions was good. However, the Type B mixtures with bio-additives performed better in the water immersion stability test. Moreover, the overall results of the indirect tensile strength test of RAP mixtures with Type B emulsions exceeded 0.7. Further research, consisting of lab testing and on-site application, will be performed to verify the possibility of using RAP for minimizing the closing of roadways.

Optimum Mix Proportion for Recycling Waste Foundry Sand as Fine Aggregate in Concrete

  • Moon, Han-Young;Song, Yong-Kyu;Park, Jae-Jin;Park, Yun-Wang;Kim, Ki-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.576-580
    • /
    • 2001
  • The amount of the waste foundry sand(WFS) produced in Korea is over 700,000 ton per year, but most WFS buries itself and only 5~6% or total WFS is recycled in the way or mixing as fine aggregate for construction materials. A bY-product, WFS produced from a foundry may affect our environmental contamination if it is discharged without proper waste disposal in Korea. Therefore in this study, we performed the fundamental research about specific gravity, absorption, grading curve, finesse modulus of WFS, different aggregates and the flow and the compressive strength of mortar with WFS replaced as fine aggregate, the workability and compressive strength of concrete with WFS as fine aggregate aimed at the specified strength of 270 kgf/$\textrm{cm}^2$, and then optimum mix proportion of concrete was determined

  • PDF

Remarks on the use of Electric Arc Furnace (EAF) Steel Slag in Asphalt Mixtures for Flexible Pavements (Electric Arc Furnace (EAF) Steel Slag의 아스팔트 포장 혼합물 내 대체 골재로서 적용 가능성에 대한 고찰)

  • Falchetto, Augusto Cannone;Moon, Ki Hoon
    • International Journal of Highway Engineering
    • /
    • v.17 no.1
    • /
    • pp.25-33
    • /
    • 2015
  • PURPOSES : This paper, presents the results of a laboratory study aimed to verify the suitability of a particular type of Electric Arc Furnace (EAF) steel slag to be recycled in the lithic skeleton of both dense graded and porous asphalt mixtures for flexible pavements. METHODS : Cyclic creep and stiffness modulus tests were performed to evaluate the mechanical performance of three different asphalt mixtures (dense graded, porous asphalt, and stone mastic) prepared with two types of EAF steel slag. For comparison purposes, the same three mixtures were also designed with conventional aggregates (basalt and limestone). RESULTS : All the asphalt mixtures prepared with EAF steel slag satisfied the current requirements of the European standards, which support EAF steel slag as a suitable material for flexible pavement construction. CONCLUSIONS : Based on the experimental work, the use of waste material obtained from steel production (e.g. EAF steel slag) as an alternative in the lithic skeleton of asphalt mixtures can be a satisfactory and reasonable choice that fulfills the "Zero Waste" objective that many iron and steel industries have pursued in the past decades.

Effect of inlet structure of filtration system on the removal characteristics of iron particles by ceramic candle filters (집진장치의 유입구조에 따른 세라믹필터의 철입자 제거특성에 미치는 영향)

  • Park, Young-Ok;Jeong, Ju-Yeong;Seo, Yong-Chil
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.189-197
    • /
    • 2009
  • Wet-type particulate removal system is employed in most of ironmaking processes. These de-dusting systems require additional downstream aggregates for treatment of water and for drying of the collected slurry. Thus dried slurry can be pressed in shape of briquettes and recycled in the steelmaking process. Different from the wet-type, the dry-type particulate removal systems generate no slurry. A high-temperature, high-pressure de-dusting system with inertial inlet was developed. The target application of this system was to remove particulate matter generated from the novel ironmaking process and other steelmaking processes. In this study we conducted tests with this newly developed system to evaluate the performance of the silica-carbide (SiC) ceramic filters. In addition, for purpose of comparison, we also conducted tests with a unit which has conventional direct inlet. Fe-Particles collected from the novel ironmaking process were used in our tests as test dusts. The temperature and the pressure were kept constant at their respective values $800^{\circ}C$ and $3kg_f/cm^2$.

  • PDF

Recycling of Chilled Converter Slag as Aggregate in Cement Mortar (급랭 진로슬래그 모르타르 골재 재활용 특성)

  • Kim, Tae Heui;Park, Kyung Bong
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.238-243
    • /
    • 2006
  • The aggregate properties of chilled converter slag reformed by atomizing liquid converter slag were investigated. The properties of mortars with various replacement of standard sand by chilled converter slag as recycled fine aggregates were investigated. The particle shape of chilled converter slag by atomizing was a sphere with an open cavity which is enclosed with two layers like a bored coconut. Specific gravity, unit weight and fineness modulus increased with increasing the replacement, and solid content had the maximum at the replacement of 75% and water absorption rate had the minimum at the replacement. The hardened mortars with higher replacements have the higher specific gravity and the denser texture.

  • PDF

Application of polymer, silica-fume and crushed rubber in the production of Pervious concrete

  • Li, Diyuan;Toghroli, Ali;Shariati, Mahdi;Sajedi, Fathollah;Bui, Dieu Tien;Kianmehr, Peiman;Mohamad, Edy Tonnizam;Khorami, Majid
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Achieving a pervious concrete (PC) with appropriate physical and mechanical properties used in pavement have been strongly investigated through the use of different materials specifically from the global waste materials of the populated areas. Discarded tires and the rubber tire particles have been currently manufactured as the recycled waste materials. In the current study, the combination of polymer, silica fume and rubber aggregates from rubber tire particles have been used to obtain an optimized PC resulting that the PC with silica fume, polymer and rubber aggregate replacement to mineral aggregate has greater compressive and flexural strength. The related flexural and compressive strength of the produced PC has been increased 31% and 18% compared to the mineral PC concrete, also, the impact resistance has been progressed 8% compared to the mineral aggregate PC and the permeability with Open Graded Fraction Course standard (OGFC). While the manufactured PC has significantly reduced the elasticity modulus of usual pervious concrete, the impact resistance has been remarkably improved.

An Experimental Study on the Development of EMP Shielding Concrete Using Electric Furnace Oxidized Slag Aggregate (전기로산화슬래그 골재를 사용한 EMP차폐 콘크리트 개발에 관한 실험적 연구)

  • Min, Tae-Beom;Cho, Hyeong-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.514-520
    • /
    • 2021
  • In this study, EMP shielding performance was evaluated using electric furnace oxidized slag to give EMP shielding performance to concrete among the most used materials in construction sites. As a result of the evaluation, the component of the electric furnace oxidation slag was found to have an Fe2O3 content of 34%, and it was also found to contain an MgO component of about 4.8%. In addition, as a result of conducting an aggregate stability evaluation due to concerns about expansion due to MgO components, it is considered to be suitable for the KS standard. EMP shielding performance evaluation result showed that there was no correlation in EMP shielding performance according to compressive strength, and that general aggregates did not have EMP shielding. However, it was found that the aggregate using the furnace oxidized slag had excellent EMP shielding performance, and the shielding performance improved as the thickness increased. As a result of the durability evaluation, it was found that the EMP shielding concrete has the durability of abortion compared to the general concrete. Through this, it is thought that it will be good to improve the shielding rate if concrete is manufactured using electric furnace oxide slag when constructing EMP shielding structures in the future.