• Title/Summary/Keyword: Recycled Asphalt Mixture

Search Result 46, Processing Time 0.022 seconds

Correlation of Binder GPC Characteristics and Mechanical Properties of Hot-Mix Recycled Asphalt Mixtures (재생혼합물의 바인더 GPC특성과 역학적 특성과의 상관성 연구)

  • Kim, Kwang-Woo;Hong, Sang-Ki;Cho, Mun-Jin;Doh, Young-Soo
    • International Journal of Highway Engineering
    • /
    • v.7 no.1 s.23
    • /
    • pp.11-20
    • /
    • 2005
  • This study examined the correlation between mechanical properties and LMS(Large molecular size) of binders in hot-recycled asphalt mixtures. Hot-recycled asphalt mixtures were manufactured by various mixing methods. Laboratory tests including indirect tensile strength, wheel tracking test and Kim test were performed for each recycled mixture. Gel-permeation chromatography (GPC) analysis was performed for the binders coated on virgin and old (RAP) aggregates separately. For the purpose of binder aging analysis, a round-shaped virgin coarse aggregates (13mm gravel) were introduced in recycled mixtures. This makes possible to distinguish the virgin aggregates from RAP aggregates in recycled mixtures for GPC sampling. Results of GPC showed that there was significant difference in aging level between the binder coated on RAP and that of virgin aggregates in the same recycled mixture. Regression analysis was performed to correlate mechanical properties to LMS ratio. Results showed that most of the mechanical properties had relatively good correlation with LMS. This trend agree with LMS increase up to some degree, but fails for further LMS increase.

  • PDF

Recycling of Shingle Waste for Pavement Asphalt Concrete (도로포장용 아스콘으로 슁글의 재활용)

  • Hong, Young-Ho;Kwon, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.614-618
    • /
    • 2006
  • Recycling of asphalt including shingle is much important for economic aspects such as a decrease of treatment cost. This research was carried out in order to process the recycled shingle to asphalt concrete which is a pavement material. Pure asphalt and the mixture of recycled asphalt were tested in terms of the thermal characteristics, viscosity, and penetration. DSC analysis indicates that the thermal characteristics of separate shingle showed similar properties regardless of processing conditions. Melting of asphalt separated from shingle occurred at $170^{\circ}C$. The viscosity and penetration of the 1~5 wt% of mixed recycling asphalt and raw material asphalt are suitable for the pavement material standard.

Engineering Characteristics of Recycled Cold Asphalt Mixtures Using Waste Glass and Red Mud (폐유리 및 레드머드를 활용한 순환 상온 아스팔트 혼합물의 공학적 특성)

  • Park, Koung-Soo;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.50-57
    • /
    • 2021
  • In this study, the engineering charateristics of recycled cold asphalt mixtures using waste glass and red mud were examined as part of the development of low carbon road pavement materials using large amounts of waste. It also examined the satisfaction of the performance criteria specified in the standard. As a result of the study, it was found that RCA using waste glass were not met standard of GR since strain resistance reduced. Therefore, it has been shown that improvements in the composition of the mixture are needed. It has also been shown to significantly improve the performance of the mixture when adding red mud. In addition, it was found that the quality standards for stability, flow value, indirect tensile strength and tensile strength ratio as specified by GR are satisfied.

A Fundamental Study of Rejuvenator for Warm in Place Recycling Asphalt Pavement Mixtures (현장 중온 재생 혼합물용 재생첨가제의 기초적인 연구)

  • Park, JaeYoung;Lee, Kanghun;Kwon, SooAhn;Lee, JaeJun
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.13-20
    • /
    • 2017
  • PURPOSES : This research was a laboratory study for evaluating the Reclaimed Asphalt Pavement (RAP) mixture added developed rejuvenator for warm mix recycling. Waste asphalt mixtures occupy about 18.2% of construction wastes in Korea. Moreover, most rejuvenators were imported from Europe or the U.S. Therefore, improving usage of RAP with a developed rejuvenator material provides environmental protection at a reduced cost. METHODS : The specimen used for this experiment was performed by only using RAP. A suitable rejuvenator for Target PG was then added. In addition, a conventional rejuvenator was selected to compare performance and specimens introduced with the same procedure as the developed rejuvenator was prepared. In order to evaluate rutting resistance and water susceptibility, we conducted a deformation strength test, a tensile strength ratio test, and a dynamic immersion test with the prepared mixtures. RESULTS :Laboratory test results indicated that both the developed additive and conventional additive improved performance of the recycled asphalt mixtures compared to mixtures without the rejuvenator. In addition, the deformation strength test and TSR test results satisfied standards for domestic recycling asphalt mixtures. The dynamic immersion test showed that the developed rejuvenator has superior scaling resistance than the conventional rejuvenator. CONCLUSIONS : In terms of rutting resistance and moisture susceptibility, the warm mix recycled asphalt mixtures with the developed rejuvenator appeared to effectively recovered performance.

A Study on a Steel Slag Asphalt Concrete Design Method Considering Density and Absorption (밀도와 흡수율을 고려한 제강슬래그 아스팔트 콘크리트의 배합설계 방법 연구)

  • Kim, Kyungnam;Jo, Shinheang;Kim, Nakseok;Kim, Hyunwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.59-67
    • /
    • 2018
  • PURPOSES : This paper presents a mix design method for using steel slag as an aggregate for asphalt mixtures. METHODS : Steel slag has a different density and absorption rate than natural aggregates. The asphalt content was calculated according to the steel slag characteristics, and the formula for aggregate-gradation correction was presented. RESULTS : The asphalt mix was designed using the proposed equations. Using the proposed mix design method, it was possible to design the asphalt mixture according to the target-usage amount of the recycled aggregate. CONCLUSIONS : The suggested method can be used for asphalt mix design using aggregates with different densities and absorption rates. It is expected to contribute to quality improvement by ensuring accurate calculation of mixing ratios for steel slag asphalt mixtures.

Development of a Composite Fiber Reinforcement Pavement using Eco-Friendly Grid and Dispersive Fibers (친환경 쉬트형 보강재 및 분산성 섬유를 적용한 복합 섬유 보강 포장 개발)

  • Park, Ju Won;Kim, Hyeong Su;Kim, Hyeok Jung;Kim, Sung Bo
    • International Journal of Highway Engineering
    • /
    • v.19 no.6
    • /
    • pp.57-66
    • /
    • 2017
  • PURPOSES : This study develops eco-friendly asphalt reinforcement materials applicable to bridge deck pavement. The main purpose is to ensure highly reliable quality applicable to structures and the possibility of practical application. The main target of the study is to develop materials that are environmentally friendly and capable of improving performance. METHODS : The application of double-reinforcement fiber improves the performance of the road pavement. 1. We use recycled film for application of sheet-typed reinforcement. 2. We use preprocessing fibers to reinforce the properties of composite pavement materials. RESULTS : The developed products may produce materials that fit the purpose of achieving stability and environmental friendliness. Sheet-typed reinforcements use more than 50% recycled resin. The most important type of damage to the asphalt layer is deflection (plastic deformation). These products have a very high deflection resistance of not less than 6,000 cycles/mm. In addition, all performance is excellent. Thus, it will be easier to access the field in the future. CONCLUSIONS : Fiber-reinforced asphalt pavement showed excellent performance. Sheet-typed reinforcements containing 50% recycling resin produced good performance in terms of functionality as well as environmental friendliness. Thus, enhancing the field applicability will enhance the usability of the reinforcements.

Characteristics of Asphalt Concrete using Waste Foundry Sand (주물고사 첨가 아스팔트 콘크리트의 특성에 관한 연구)

  • Kim, Kwang-Woo;Ko, Dong-Hyuk;Choi, Dong-Chon;Kim, Sung-Won;Kim, Joong-Yul
    • International Journal of Highway Engineering
    • /
    • v.3 no.4 s.10
    • /
    • pp.105-116
    • /
    • 2001
  • This study was performed to evaluate the characteristics of waste foundry sand (WFS) and the asphalt mixture made of a foundry waste sand. To estimate the applicability of WFS, chemical and physical properties were measured by XRF(X-ray fluorescent), and SEM(Scanning electronic microfilm). To improve the stripping resistance of WFS asphalt mixture, anti-stripping agents (a hydrated lime and a liquid anti-stripping agent) were used. To improve tensile properties and durability of WFS asphalt concrete mixture, LDPE(low-density polyethylene) was used as an asphalt modifier Marshall mix design, indirect tensile strength, tensile strength ratio(TSR) after freezing and thawing, moisture susceptibility and wheel tracking tests were carried out to evaluate performance of WFS asphalt concrete. Comparing with conventional asphalt concrete, WFS asphalt concretes showed similar or the better qualify in mechanical properties, and satisfied all specification limits. Therefore, it Is concluded that waste foundry sand can be recycled as an asphalt pavement material.

  • PDF

Evaluation of TDF ash as a Mineral Filler in Asphalt Concrete (TDF ash를 채움재로 사용한 아스팔트 콘크리트 물성 평가)

  • Choi, MinJu;Lee, JaeJun;Kim, HyeokJung
    • International Journal of Highway Engineering
    • /
    • v.18 no.4
    • /
    • pp.29-35
    • /
    • 2016
  • PURPOSES : The new waste management policy of South Korea encourages the recycling of waste materials. One material being recycled currently is tire-derived fuel (TDF) ash. TDF is composed of shredded scrap tires and is used as fuel in power plants and industrials plants, resulting in TDF ash, which has a chemical composition similar to that of the fly ash produced from coal. The purpose of this study was to evaluate the properties of an asphalt concrete mix that used TDF ash as the mineral filler. METHODS : The properties of the asphalt concrete were evaluated for different mineral filler types and contents using various measurement techniques. The fundamental physical properties of the asphalt concrete specimens such as their gradation and antistripping characteristics were measured in accordance with the KS F 3501 standard. The Marshall stability test was performed to measure the maximum load that could be supported by the specimens. The wheel tracking test was used to evaluate the rutting resistance. To investigate the moisture susceptibility of the specimens, dynamic immersion and tensile strength ratio (TSR) measurements were performed. RESULTS : The test results showed that the asphalt concrete containing TDF ash satisfied all the criteria listed in the Guide for Production and Construction of Asphalt Mixtures (Ministry of Land, Infrastructure and Transport, South Korea). In addition, TDF ash exhibited better performance than that of portland cement. The Marshall stability of the asphalt concrete with TDF ash was higher than 7500 N. Further, its dynamic stability was also higher than that listed in the guide. The results of the dynamic water immersion and the TSR showed that TDF ash shows better moisture resistance than does portland cement. CONCLUSIONS : TDF ash can be effectively recycled by being used as a mineral filler in asphalt, as it exhibits desirable physical properties. The optimal TDF ash content in asphalt concrete based on this study was determined to be 5%. In future works, the research team will compare the characteristics of asphalt concrete as function of the mineral filler types.