• Title/Summary/Keyword: Recycled Aggregates

Search Result 493, Processing Time 0.021 seconds

Properties of Fresh Concrete with Recycled Coarse and Fine Aggregates (순환(循環)굵은/잔골재(骨材)를 사용한 굳지 않은 콘크리트의 특성(特性))

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan;Lee, Do-Heun
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.20-26
    • /
    • 2009
  • The objective of this study is to investigate the properties of fresh concrete with recycled coarse and fine aggregates. Four different kinds of aggregate with natural, recycled aggregates were prepared. The concrete mixtures were produced with test parameters of replacement ratio of recycled aggregate. The properties of the fresh concrete were measured by means of slump and air content according to elapsed time. Quality control method to maintain the constant total mixing water for recycled aggregate concrete was suggested. The all concrete mixtures were produced with approximately the same slump on the job site after an hour. Test results indicated that compressive strength of concrete with constant slump is not affected by the replacement ratio of recycled aggregate. Also the practical way for the quality control of recycled aggregate concrete is to maintain the constant total mixing water.

An Experimental Study on the Relationship Between Physical Property of Recycled Aggregates and an Amount of Mortar Attached to the Original Aggregate (재생골재의 물리적 성질과 모르타르 부착양의 관계에 대한 실험적 연구)

  • Kim Hyun-Ho;Yang Keun-Hyeok;Kang Kyung-In;Jung Sang-Jin;Chung Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.141-144
    • /
    • 2005
  • This paper reports the results of experimental study on the effect of an amount of mortar attached to the surface of original aggregate on the physical properties of recycled aggregates such as specific gravity, and water absorption. An amount of attached mortar was evaluated by hydrochloric acid precipitation method. Test results indicated that a water absorption of recycled aggregates was proportional to the amount of mortar attached to the original aggregate.

  • PDF

An Experimental Study on the Workability and Engineering Properties of Recycled Aggregate Concrete Mixed Fly ash. - Part 1. In the case of fresh concrete - (플라이애쉬를 혼입한 재생골재의 시공성 및 공학적 특성에 관한 실험적 연구 -제 1보 아직 굳지않은 콘크리트의 성상을 중심으로-)

  • 남상일;김진만;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.254-259
    • /
    • 1994
  • Recycling of waste concrete will contribute not only to the solution of a growing waste disposal problem, also help to conserve natural resources of aggregate and to secure future supply of reasonably priced aggregates for building construction purpose within large urban areas. But there recycled aggregates are more porous and less resistant to mechanical actions. In comparison with natural aggrete concrete, recycled aggregate concrete shows reductions in strength and other engineering properties. And it may also be less durable due to increase in porosity and permeability. Economical ways of improving the quality of recycled aggregate concrete are: (1)by reducing the water-cement ratio; (2)by reducing the water content using a superplasticizer without affecting the workability; (3)addition of pozzolan, such as fly ash; and (4)blending of recycled aggregate with the natural aggretes.

  • PDF

A Study on the Hydration Property of Mortar with Balst Furnace Slag using Water Eluted from Recycled Coarse Aggregates (순환골재 용출수를 활용한 고로슬래그 미분말 혼입 모르터의 강도특성)

  • Shin, Sang-Yeop;Jeong, Euy-Chang;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.81-82
    • /
    • 2012
  • The purpose of this study is the hydration properties of motar using Blast-Furnace Slag(BFS) with water elured from recycled coarse aggregate. The results of the experiment show that the water eluted from recycled coarse aggregate mixed with blast furnace slag has comparatively higher hydration activity than the mortar not mixed with one in early-age mortar causing the calcium hydroxide in the recycled coarse aggregate to work on as a stimulus to the hydration of ground granulated blast furnace slag. BFS mixed with the eluting water the hydration reaction was a promotion.

  • PDF

A Fundamental Study on the Quality of Recycled Aggregate Produced in Recycling Plant (재활용플랜트에서 생산되는 재생골재의 품질현황에 관한 기초적 연구)

  • 강희관;박선규;신호철;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.33-38
    • /
    • 1997
  • The reuse of waste concrete amy settle the problems of environmental pollution and critical shortage of good natural aggregate. But recycled aggregate particles consist of substantial amount of relatively soft cement paste component. These aggregates are more porous, and les resistant to mechanical actions than natural aggregate. And the source of supply for manufacturing recycled aggregate is generally composed of different types of original aggregate and strengths of original mortar. The properties of recycled aggregate exhibit a considerable variation due to the properties of original concrete. This paper is an experimental study on the fundamental properties of recycled aggregates sampled from processing plant in the suburbs of TaeJeon.

  • PDF

The Strength Properties of the Concrete Using Recycled Aggregates (재생골재를 사용한 콘크리트의 강도특성에 관한 연구)

  • Won, Cheol;Kim, Dong-Seok;Lee, Sang-Soo;Kwon, Yeong-Ho;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.45-50
    • /
    • 1997
  • Recycling of waste concrete will contribute not only to the solution of a growing waste disposal problem, also help to conserve natural resources of aggregate and to secure future supply of reasonably recycled aggregates for building construction purpose within large urban areas. Therefore, the purpose of this study is to analyze the applicability of recycled concrete in the influence of a substitute rate of recycled aggregate. As the result of this study, it is possible to conform that the recycled aggregate concrete substituted by 30~50% of the crushed aggregate can be applicated in site.

  • PDF

An Experimental Study on the Chemical Soundness of Recycled Aggregate Concrete (재생골재 콘크리트의 화학안정성에 관한 실험적 연구)

  • 김무한;김규용;박선규;이정율
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.13-20
    • /
    • 1999
  • Recently, the study for practical construction application no recycled aggregate concrete is actively being proceeded, on the purpose of technical development for recycling on the construction waste concrete occurred at the time of destruction of building construction by the rapid increase of building wastes and exhaustion of natural aggregates. But, the durability of investigation with all sorts of fluidity and engineering property for application recycled aggregate concrete to practical construction must be done at the same time. Especially, because of the real condition for chemical attack of concrete construction by the acid rain, acidification of soil, deepening of air pollution and dirty water etc. being come to the fore a serious problem, the study on the chemical soundness of concrete durability must be accompanied. This study is composed as: I series: Analysis for chemical soundness of aggregates. II series: Analysis for chemical soundness of natural and recycled aggregate concrete against $Na_2$$SO_4$ solution in drying and wet curing condition ($at20~80^{\circ}C$).

Hydration Analysis of Fine Particle and Old Mortar Attached on the Surface of Recycled Aggregate

  • Ko, Dong-Woo;Choi, Hee-Bok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.460-467
    • /
    • 2012
  • When recycled aggregate with old mortar and particles is used in concrete mixing, such aggregates can affect hydration reaction by promoting or inhibiting it. In this study, the possibility of hydration reaction on old mortar and particle was analyzed. Hydration reaction was carried out in old mortar that is finely crushed by an impact machine in the production of recycled aggregates, and it was found that this did have an impact on the strength development of concrete. Unlike in old cement, the hydration reaction did not progress in the particles, and it had high amounts of silica powder and calcium carbonate. In conclusion, the old mortar can have the influence of improving compressive strength, but the particles can delay the setting time of recycled aggregate concrete.