• Title/Summary/Keyword: Recycle product

Search Result 116, Processing Time 0.026 seconds

Identifying business ethics components according to business area for small and medium-sized fashion companies (중소 패션기업의 업무영역별 비즈니스 윤리 요소 도출)

  • Kim, Soo-Kyung;Yoh, Eunah
    • The Research Journal of the Costume Culture
    • /
    • v.27 no.5
    • /
    • pp.415-432
    • /
    • 2019
  • The purpose of the present study was to generate a list of business ethics components according to business area for small and medium-sized fashion companies. Based on the literature review, 21 components of business ethics components were identified within five business areas. Ten CEOs(Chief Executive Officers) each participated in an in-depth interview, sharing ethical and unethical cases from their own businesses. Constant comparative analysis was used to generate important business ethics components from those cases. In results, important business ethics components for each business area are: 1) using human-friendly materials, strengthening sustainable technologies, using vegan materials, concerning safe process, and reducing waste in the material production and sourcing area, 2) enhancing an efficiency in design, developing recycle/reuse designs, avoiding to copy designs, and using messages for public interest in the product design area, 3) concerning fair-trade, reducing harmful substance, saving energy, and using ethical supply channels in the distribution and logistics area, 4) acquiring certifications, promoting consumer protection, avoiding exaggerative/false advertisements, and promoting social contributions in the management and marketing area, and 5) promoting workers' rights, complying with the law, and investing on employee educations in the labor management area. All of the ethical and unethical cases of the ten companies have involved aspects of the 21 components, thereby enhancing understandings on how each issue is being seriously considered and/or handled in the small and medium-sized fashion companies. Study findings may provide a basis for development of a research model for quantitative studies and/or educational programs related to business ethics in the fashion industry.

Basic Factors for Quality Stability of Material Recycling Product Using Plastic Waste from Households (생활계 폐플라스틱 물질 재활용 제품의 품질안정화를 위한 기초 요인 검토)

  • Kang, Suk-Pyo;Kang, Hye-Ju;Shin, Sung-Chul;Kim, Young-Sik;Lee, Hoo-Seok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.436-443
    • /
    • 2020
  • In this paper, we tried to examine the composition ratio of plastic waste from households according to the generated city and the qualities according to the production time of material recycling products. As a result, the composition ratio of recyclable plastic waste among the total plastic waste according to the generated cities is 64.5~90.4%, showing a big difference by city. In addition, the quality evaluation of material recycling products by production time for four months showed that the average tensile strength was 12.33MPa, the average elongation rate was 5.94%, the average density was 1.35g/㎤ and the average ash content was 3.66%.

Factors affecting consumers' perceptions of the public recycling of fashion waste and circular fashion products (패션폐기물의 공공분리배출과 순환패션제품에 대한 소비자의 인식과 영향요인)

  • Hyojung Suk
    • The Research Journal of the Costume Culture
    • /
    • v.31 no.2
    • /
    • pp.141-160
    • /
    • 2023
  • Controlling fashion waste throughout the entire product lifecycle is critical in a circular economy. This study explored the possibility of establishing a public recycling system for fashion waste. Since consumer interests and participation are essential, theoretical research, social-text analysis, and quantitative research were conducted to identify consumers' perceptions of the public recycling of fashion waste and circular fashion. Data were collected via an online survey among women in their 20-30's living in Korea, and 304 samples were used for data analysis. The results were as follows. First, consumers' perceptions of recycling fashion waste were composed of recycling difficulty, the need for public recycling, and the need for EPR. Circular fashion perception comprised favor, environment protection, attractiveness, economics, quality and hygiene risks, and lack of diversity. Second, the reuse-recycle attitude and need for EPR affected the favor of all types of circular fashion products. Third, environmental concerns impacted attractiveness, and the favor significantly affected the purchase intention of all types of circular fashion products. In particular, quality and hygiene risk negatively affected the purchase intention of used-fashion products, while attractiveness positively impacted the purchase intention of upcycled-fashion products. The results implied that discussing the public recycling system of fashion waste and EPR policy is imperative. The results also showed the need to classify different types of circular fashion products, such as used, upcycled, and regenerated fashion items, to examine consumers' perceptions. In addition, the recycling of the fashion waste scale developed in this study could be used for further research.

A Study on Prevention of Fouling Formation by Reduction Reaction of CaSO4 in a Biomass Circulating Fluidized Bed Combustion (바이오매스 순환유동층 연소에서 CaSO4 환원반응에 의한 파울링 발생 방지 연구)

  • Seong-Ju Kim;Sung-Jin Park;Sung-Ho Jo;Se-Hwa Hong;Yong-Il Mun;Tae-Young Mun
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • A large amount of carbon monoxide (CO) is generated in circulating fluidized bed combustion, the process whereby a hot cyclone separates unburned fuel. However, calcium sulfate (CaSO4), when combined with a high CO content, can cause fouling on the surface of the steam tube installed inside the integrated recycle heat exchangers (INTREX). In this study, CaSO4 decomposition was investigated using 0.2-3.2 vol.% CO and 1-3 vol.% oxygen (O2) at 850℃ for 20 min in a lab-scale fluidized bed reactor. The results show that CaSO4 decomposes into CaS and CaO when CO gas is supplied, and SO2 emissions increase from 135 ppm to 1021 ppm with increasing CO concentration. However, the O2 supply delayed SO2 emissions because the reaction between CO and O2 is faster than that of CaSO4; nevertheless, when supplied with CaCO3, the intermediate product, SO2 was significantly released, regardless of the CO and O2 supply. In addition, agglomerated solids and yellow sulfur power were observed after solid recovery, and the reactor distributor was corroded. Consequently, a sufficient O2 supply is important and can prevent fouling formation on the INTREX surface by suppressing CaSO4 degradation.

Evaluation of Sustainable Plastic Management Strategy of Korean Consumer Goods Companies (국내 소비재 기업의 지속 가능한 플라스틱 경영 전략 평가를 위한 지표 개발)

  • Suho Han;Seongku Kwon;Junhee Park;Jeongki Lee;Jay Hyuk Rhee;Yongjun Sung;Sung Yeon Hwang;Yong Sik Ok
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.745-756
    • /
    • 2023
  • Growing stringent global regulations in Korea poses a threat to corporate sustainability. Companies must respond strategically to navigate these regulations and avoid greenwashing. Objective of this research was to analyze how Korean companies are responding to the global trend of reducing plastic use and propose improved management strategies. Seven indicators were developed to assess companies' post-plastic strategies and applied to analyze the sustainability reports of Amore Pacific and LG Household & HealthCare. These indicators included, 1) disclosure of plastic raw materials used by weight or volume, 2) disclosure of recycled plastic raw materials used by weight or volume, 3) disclosure of waste recycling, reuse amounts, and disposal using waste treatment method 4) strategies to reduce environmental impact of plastics, 5) plastic packaging, reduce, recycle, reuse, and composting (in the real environment), 6) plastic management roadmap for the circular economy, and 7) education for sustainable plastic management. Based on the review of considered companies, we propose in-listed sustainable plastics management strategies: disclosing the ratio of plastic raw materials and recycled raw materials for all products, considering recycling rate throughout the product value chain, and not only for the production phase, reviewing carbon dioxide emissions based on life cycle assessment rather than reducing plastic consumption, studying the biodegradability of biodegradable plastics in natural environment such as soil, considering the consumer's perspective.

The Impact of Environmental Concern, Environmental Knowledge, and Consumer Value on Purchase Intention and Behavior of Up-cycled Products (환경관심, 환경지식, 소비가치가 업사이클 제품의 구매의도 및 구매행동에 미치는 영향)

  • Chan Ho Jeon;Sang Hyeok Park;Seung Hee Oh
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.1
    • /
    • pp.123-138
    • /
    • 2024
  • With the increase in online shopping and delivery food consumption since the pandemic, solving environmental problems caused by single-use packaging has become an important issue. 'Upcycling' is a combination of 'Upgrade' and 'Recycle', and it is the rebirth of obsolete or discarded objects by adding new value to them, and there are currently various upcycled products on the market. In order to activate upcycling, consumers' awareness of the environment and their values for consumption are very important. This study aims to investigate the influence of students' environmental concern, environmental experience, and consumption value on their purchase intention of upcycled products. Based on the results of previous studies on environmental concern, environmental experience, and consumption value, hypotheses were set, and a survey was conducted among university students nationwide to test the hypotheses. The results of this study are as follows First, environmental concern has a significant positive effect on purchase intention of upcycled products. It can be seen that the more environmental concerns such as global warming and waste disposal problems increase, the more positive attitudes toward upcycled products increase. Second, the research hypothesis that environmental knowledge will have a positive effect on the purchase intention of upcycled products is rejected. It was found that environmental knowledge is acquired through environmental education and many SNS, but it does not have a direct effect on the purchase intention of upcycled products. Third, it was found that the consumption value of college students has a positive effect on the purchase intention of upcycled products by increasing their positive perception of upcycled products. Fourth, college students' purchase intention of upcycled products has a positive effect on their behavioral intention to purchase upcycled products. The results of the study provide implications for relevant organizations such as universities and companies to effectively design upcycling-related education. It is also expected to have a positive impact on the use of upcycled products by providing basic information on the characteristics of consumers who purchase upcycled products.

Liquid-Composting Conditions of By-product Obtained from Degradation of Animal Carcass for Agriculture Recycling (폐가축사체의 농업적 재활용을 위한 가축사체 액상부산물의 액비화 조건 구명)

  • Seo, Young-Jin;Seo, Dong-Cheol;Kang, Se-Won;Lee, Sang-Gyu;Park, Ju-Wang;Choi, Ik-Won;Sung, Hwan-Hoo;Kang, Seog-Jin;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.4
    • /
    • pp.348-354
    • /
    • 2013
  • BACKGROUND: Globally, concern about emerging infectious diseases of livestock is growing. For the disposal of the animal carcass, it is necessary to recycle the carcass into an agriculturally usable product. The objective of this study was to investigate the composting conditions of liquid by-product obtained from degradation of animal carcass. METHODS AND RESULTS: Optimum conditions of liquid fertilizer were investigated using different microorganisms, pHs, and volumes of microorganisms (Lactobacillus rhamnosus+Pichia deserticola). Based on the results from the optimum conditions, compost maturity and quality of liquid fertilizer were evaluated for 112 days. The compost maturity of liquid fertilizer were higher in the order of LP(Lactobacillus rhamnosus + Pichia deserticola) > BC(Bacillus cereus) > BS(Bacillus subtilis). The optimum condition under different volumes of LP was injection of 0.5 mL/100 mL. The compost maturity under different pHs were higher in the order of pH 7 > $$5{\geq_-}9{\frac{._-}{.}}11$$. The liquid by-product at 56 days after composting was completely decomposed. The concentrations of T-N, T-P and $K_2O$ in liquid fertilizer at 56 days were 0.94, 0.17 and 3.78%, respectively, and the sum of those concentrations was 4.89%. CONCLUSION(S): Liquid fertilizer of by-product using pig carcass was decomposed with optimum conditions(LP, pH 7, injection of 0.5 mL/100 mL) in 56 days after composting, and was suitable for official standard of commercial fertilizer.

The Density and Strength Properties of Lightweight Foamed Concrete Using Stone-Powder Sludge in Hydrothermal Reaction Condition (수열반응 조건에서 석분 슬러지를 사용한 경량 기포 콘크리트의 밀도와 강도 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Choi, Se-Jin;Kim, Bong-Joo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.687-693
    • /
    • 2006
  • The Stone Powder Sludge(below SPS) is the by-product from the process that translates stone power of 8mm under as crushed fine aggregate. It is the sludge as like cake that has average particle size of $7{\mu}m$, absorbing water content of 20 to 60%, and $SiO_2$ content of 60% over. Because of high water content of SPS, it is not only difficult to handle, transport, and recycle, but also makes worse the economical efficiency due to high energy consuming to drying. This study is aim to recycle SPS as it is without drying. Target product is the lightweight foamed concrete that is made from the slurry mixed with pulverized mineral compounds and foams through hydro-thermal reaction of CaO and $SiO_2$. Although in the commercial lightweight foamed concrete CaO source is the cement and $SiO_2$ source is high purity silica powder with $SiO_2$ of 90%, we tried to use the SPS as $SiO_2$ source. From the experiments with factors such as foam addition rate and replacement proportion of SPS, we find that the lightweight foamed concrete with SPS shows the same trends as the density and strength of lightweight foamed concrete increases according to decrease of foam addition rate. But in the same condition, the lightweight foamed concrete with SPS is superior strength and density to that with high purity silica. This trends is distinguished according to increase of replacement proportion of SPS, also the analysis of XRF shows that the hydro thermal reaction translates SPS to tobermorite. Although SPS has low $SiO_2$ contents, the lightweight foamed concrete with SPS has superior strength and density, because it reacts well with CaO due to extremely fine particles. We conclude that it is possible to replace the high purity silica as SPS in the lightweight foamed concrete experimentally.

Comparison of compost product quality with nature soil standard (국내생산퇴비의 부숙토 기준에 대한 적합성 검토)

  • Choi, H.G.;Lee, J.A.;Kim, K.Y.;Lee, K.C.;Lee, J.G.;Park, K.H.;Park, J.S.;Phae, C.G.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.2
    • /
    • pp.77-86
    • /
    • 2001
  • As construction and expansion of wastewater treatment works is continuing, generation of sludge is increasing. Bur most sludge is not used appropriately but disposed by landfill dumping to sea. Furthermore direct landfilling of sludge cake containing moisture content over 75% has been legally prohibited since 2001 that's enforcement will be more strict in 2003. Such a situation means nowadays recycling of organic waste such as sludge and food waste is necessary. Composting is one of recycling methods commonly and used as an effective means of stabilizing organic waste and then compost can be used as fertilizer. However fertilizer law management which include standard of compost products and other fertilizers applied all sludge products indiscriminiately and was not flexible. So MOE has graded organic composts according to land applications to improve recycle of organic wastes. The classified organic compost which contains low contaminants has been possible to use as various purpose. This study enalyzed 30 samples which were raw materials for compost and compost products management well and to estimate the quality of compost products. Heavy metals were measured in Raw materials and OM/N, NaCl and VS were tested in compost products as well as heavy metals. As a result, approximate 10% of raw materials was not suitable to the grade A and 6.7% over the grade B of the regulation on raw materials for compost. In the case of 30 produced compost propducts approximate, 57% of composts was not compatible with the grade A and B of the regulation on composting product. The qualities of compost products were worse than raw materials, because the compost products have more regulation item raw materials have.

  • PDF

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.