• Title/Summary/Keyword: Recycle aggregate

Search Result 94, Processing Time 0.025 seconds

Study on Performance Evaluation of Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로 산화슬래그 골재를 사용한 콘크리트의 성능 평가에 관한 연구)

  • Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.97-103
    • /
    • 2017
  • As the shortage of concrete aggregates is intensifying, the development of alternative resources is urgent. As the amount of steel slag increases year by year, attempts are being made to recycle slag into high-value-added products in order to develop an efficient resource recycling industry based on slag and to obtain economic benefits. However, the use of electric arc furnace oxidizing slag (EOS) as building materials is practically limited because it contains unstable materials. In this paper, physical properties of concrete were evaluated by using electric arc furnace slag aggregate. It has been produced with two levels of general strength area W / C 45% and high strength area W / C 30%. Fresh concrete has been tested in air content, flow and slump, unit weight. The properties of the cured concrete were investigated by compressive strength, bending strength and unit volume weight. As a result of this study, strength of concrete increased with increasing EOS aggregate mixture.

Assesment of Applicability of Recycled Aggregates for Highway Pavement Materials (도로포장 재료로서 폐콘크리트 재생골재의 활용성 연구)

  • Kim, Kwang-Woo;Ryu, Neung-Hwan;Doh, Young-Soo;Li, Xiang-Fan
    • International Journal of Highway Engineering
    • /
    • v.3 no.2 s.8
    • /
    • pp.103-112
    • /
    • 2001
  • This study was performed to evaluate applicability of recycled aggregates as subbase and surface concrete materials for cement concrete pavement. Laboratory compaction test, CBR test and plate load bearing test were conducted to evaluate applicability for pavement subbase materials. Recycled concrete for surface course was manufactured with a design strength of $280kgf/cm^2$. Normal coarse aggregate was substituted with recycled aggregates with five different ratios, 0%, 20%, 40%, 60% and 80% for recycled concrete mixes. Fresh concrete Properties, concrete strength properties for the five substitution percentages of recycled aggregates after 28-day curing and freezing-and-thawing resistance were evaluated experimentally. Based on the experimental results, it was concluded that the recycled aggregate was the material good enough to use for subbase material, and 40% or lower substitution ratio was an appropriate percentage of recycled aggregates replacement for surface concrete.

  • PDF

The Experimental Study of Concrete Products made Vibration-Compressive According to Waste Concrete Powder Replacement (폐콘크리트 미분말 대체율에 따른 진동가압성형 콘크리트 제품의 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;Kim, Jin-Man;Han, Sang-Il;Kim, Jae-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.191-192
    • /
    • 2016
  • Recently, there have been many studies about recycling cementitious powder from concrete waste, generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder in paste is dehydrated making possible the restoration of hydraulic properties. Thus the purpose of this study is to make an experimental review on properties of concrete products made vibration-compressive according to waste concrete powder.

  • PDF

Mix Design for Waste PE Films Modified Asphalt Concrete (농업용 폐비닐로 개질한 아스팔트 콘크리트의 배합설계)

  • 김광우;이상범;오성균;고동혁;정승호
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.313-318
    • /
    • 1999
  • This study is basic research to improve quality of asphalt concrete mixture, to preserve environment, and to recycle waste vinly. The mixing method and proper content of waste vinyl were determined through preliminary mix design. This study performed mix designs using 2 type gradations of aggregate in addtion content of wate vinly. Marshall stability at optimum asphalt content of asphalt concrete mixture addtin wate vinly was satisfied with the specification of the Ministry of Construction and Transportation , and its values indicated that dense grade asphalt concrete mixture containing waste vinyl were higher than common dense grade mixture (control). From this study, it was confirmed that addtion of waste vinyl improved quality of asphalt concrete mixture.

  • PDF

Quality Property of the Artificial Stone Using the Waste Porcelain (폐자기를 사용한 인조석재의 품질평가)

  • Yoo, Yong-Jin;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.171-172
    • /
    • 2015
  • Recently, it is the global warming phenomenon because of the greenhouse gas exhaustion caused by and the environment problem is serious. And it is the situation where the problem of the exhaustion of resource because of the indiscriminate picking of the that is the raw material of the cement, limestone and natural aggregate are emphasized. In addition, thus the cement reduction amount of use and substitute material research is the urgent actual condition with the gas emission, which here it is generated in conducting compression molding in the building stone manufacturing process performance degradation phenomenon and fire resistance, and problem of the durability. Therefore, in this research, the waste porcelain is applied to the artificial stone and the durability property of the artificial stone according to it tries to be investigated.

  • PDF

Analysis of the operating factors of dissolved air flotation (DAF) process for effluent quality improvement from aquaculture rearing tank (양식장 배출수 수질관리를 위한 용존공기부상 공법의 운전 인자 영향 분석)

  • Ki, Jae-Hong;Kim, Hyoung-Jun;Lee, Ju-Young;Han, Moo-Young;Gang, Hee-Woong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.107-113
    • /
    • 2012
  • Pollutants in aquaculture system effluent mostly originated from solid wastes including uneaten feed and excreta of cultured species. In this research, DAF(Dissolved Air Flotation) unit is suggested as an integrated solid control unit especially as a form of IIBG(Inline Injection Bubble Generation) process in aquaculture system. Solid removal performance of DAF unit was examined under various operation and salinity conditions with turbidity and suspended solid. Solid waste removal efficiencies were found to be affected by operation conditions including saturator pressure, recycle ratio, coagulant concentration. Solid removal efficiency was higher under higher saturator pressure and recycle ratio under which condition larger number of bubbles is generated. Coagulant is thought to have important role in creating bubble-particle aggregate by showing better removal efficiency with higher concentration. However higher saline water showed less effectiveness in removing solids by DAF(IIBG). Application of DAF(IIBG) process also showed additional effect in phosphate removal and DO(Dissolved Oxygen) supply. Phosphate existed in polluted water was removed up to 46% after treatment, which is thought to attribute to aluminium phosphate precipitation. And DO concentration was found to increase over 50% of initial saturation concentration after the injection of micro-bubbles. Through experiments on solid removal from aquaculture effluent, DAF(IIBG) process is estimated to be effective solid control method. This property can help aquaculture system being installed and operated simply and effectively.

The Comparison and Analysis of Social Cost according to Emission of Carbon Dioxide through Case Study on the Site-Recycling of Waste Concrete (폐콘크리트의 현장재활용 사례를 통한 이산화탄소 배출에 따른 사회적 비용 비교분석)

  • Kwon, Soon-Boum;Lee, Jae-Sung;Jang, Seo-Yeon;Bae, Kee-Sun;Jung, Jong-Suk
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.459-462
    • /
    • 2007
  • Recently, it has been important issue to recycle the rapid increase of construction waste. The site-recycling of construction waste has been one of alternatives to recycle construction waste. The economic superiority of site-recycling was shown in previous studies, but it is hardly studied in the Quantification of social costs from site-recycling. This study identified the generation of the carbon dioxide from the site-recycling and Quantified the social costs of it. Also, this study performed the comparison and analysis of the social costs of the carbon dioxide in accordance with the aggregate production from the site-recycling, processing on commission, and a stony mountain. The results of this study indicated that the site-recycling was the most effective in the social costs.

  • PDF

A Study on the Physical Properties of Recycled Aggregates Using Concrete of Changing Waste Pottery Blain Fineness (폐도자기 분말도 변화에 따른 순환골재 사용 콘크리트의 물리적 특성에 관한 연구)

  • Ryu, Hyun-Gi;Park, Jeong-Min;Joung, Jae-Ho;Kim, Eui-Chang;Yoon, Seung-Joe
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.119-127
    • /
    • 2011
  • Objective of this study is to identify properties on strength increase of hardened concrete and fluidization of non-hardened concrete using waste ceramics generated by construction waste, which is a type of industrial waste, and by ceramics, which is a clay plastic, during its production process, and determine length change ratio caused by drying shrinkage during substitution of recycle aggregate and waste ceramics, and whether they can be used as concrete compounds. Slump of non-hardened concrete exhibited the best fluidization and formability at recycled aggregate's replacement ratio of 60% driven by higher substitution ratio of recycled aggregate and waste ceramics while air content met the KS requirement when substitution ratio of waste ceramics was $4,000cm^2/g$. Compressive strength of hardened concrete exceeded the requirements at early age and standard age and temperature dropped by roughly $6{\sim}10^{\circ}C$ less than the standard at maximum temperature in adiabatic temperature increase, which will hopefully result in stronger durability.

  • PDF

Engineering Performance and Applicability of Environmental Friendly Porous Concrete for a Marine Ranch Using Steel Industry By-products (철강산업 부산물을 활용한 해양목장 조성용 친환경 다공질 콘크리트의 공학적 성능 및 적용성)

  • Lee, Byung-Jae;Jang, Young-Il;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2013
  • The steel industry, a representative industry that significantly consumes raw materials and energy, produces steel as well as a large amount of by-product steel slag through the production process. The vast habitat foundation of marine life has been destroyed due to recent reckless marine development and environment pollution, resulting in intensification of the decline of marine resources, and a solution to this issue is imperative. In order to propose a method to recycle large amounts of by-product slag into a material that can serve as an alternative to natural aggregate, the engineering properties and applicability for each mixing factor of environment friendly porous concrete as a material for the composition of marine ranches were evaluated in this study. The test results for percentage of voids per mixing ratio revealed that the margin of error for all conditions was within 2.5%. The compressive strength test results showed that the most outstanding environmental friendly porous concrete can be manufactured when mixing 30% slag aggregate and 10% specially treated granular fertilizer for the optimum volume fraction. As concrete for marine applications, the best seawater resistance was obtained with mixing conditions for high compression strength. An assessment of the ability to provide a marine life habitat foundation of environmentally friendly porous concrete showed that a greater percentage of voids facilitated implantation and inhabitation of marine life, and the mixing of specially treated granular fertilizer led to active initial implantation and activation of inhabitation. The evaluation of harmfulness to marine life depending on the mixture of slag aggregate and specially treated granular fertilizer revealed that the stability of fish is secured.

Assessment of Application of the Recycled Aggregate Crushed in-situ for Anti-freezing Layer and Lean Concrete Base Course (현장파쇄 순환골재의 동상방지층 및 빈배합 콘크리트층에 대한 적용성 평가)

  • Kim, Jin-Cheol;Kim, Hong-Sam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.1
    • /
    • pp.98-107
    • /
    • 2005
  • In other to recycle the waste concrete produced in stiu on the construction and management in highway, the recycled aggregates were experimentally examined in a practical application for anti-freezing layer and lean concrete base course. From the results, the mobile impact crusher and the eccentric-mounted cone and jaw were superior to the others for the graded aggregates. In the case of anti-freezing layer, the recycled one was easily controlled since the dry densities, contrary to natural one, were not largely changed with the moisture contents. It was found that the 7days compressive strengths of lean concrete were above the 10MPa regardless of the crushing types. From the result of testing the bearing capacity of anti-freezing layer, it was found that when the recycled aggregates mixed with natural sand would be within the required gradations, the layer meets the requirements of limitation and the percentage to passing 2-20mm sieve increased by 5~13% because the flimsy mortars on aggregate were re-crushed by vibrated-roller compactor. Although the compressive strength of lean concrete was 71~85% of the natural coarse aggregate, the recycled aggregates are applicable to the lean concrete because they largely exceeded the required strength, 5.8MPa.

  • PDF