• Title/Summary/Keyword: Recyclability rate

Search Result 16, Processing Time 0.023 seconds

A Study on the Standard Method to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 표준산정방법에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Shim, Kang-Sik;Kim, Jin-Han;Sim, Jae-Sul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • European directive DIRECTIVE 2002/96/EC requires the minimum recycling & recovery rate on the waste electrical and electronic equipments (WEEE). But, they do not have guidelines on the calculation methods for recycling and recovery rate. A standard method to calculate recyclability and recoverability rate of products in the designing stage is necessary for the manufacturers so that they can reflect the calculated result to the improvement of product design. In this work, we investigated the existing calculation methods for the recycling and recovery rates of WEEE and the recyclability and recoverability rates of electrical and electronic equipments (EEE). A method for the calculation of recyclability and recoverability rates for the EEE products in the development stage was developed. The newly-developed calculation method was applied to some EEE products and the calculated results were evaluated.

A Study on the Establishment of the Standards for the Recycling Rate of Parts and Materials to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 산정을 위한 부품/소재의 재활용기준 정립에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Kim, Jin-Han;Shim, Kang-Sik;Kim, Jin-Ho;Han, Seong-Chul
    • Clean Technology
    • /
    • v.14 no.4
    • /
    • pp.232-241
    • /
    • 2008
  • European directive DIRECTIVE 2002/96/EC requires minimum recycling & recovery rates on waste electrical and electronic equipment (WEEE). We tried to make references for recycling and recovery rates of parts and materials used in electrical and electronic equipment (EEE), which could be used to calculate recyclability and recoverability rates of a product in the development phase. First, we investigated recycling processes of WEEE and recycling and recovery characteristics of parts and materials. Based on the investigation results and the european recycling data, we made a data base of parts and materials for calculation of recycling and recovery rates of EEE. The developed DB was improved by reflecting advices of european experts.

  • PDF

The Analysis on the Recyclability of Shenlong Automobile Company in China using SWOT Technique

  • Zhao, Wei;Jung, Heonyong
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2022
  • The purpose of this study is to investigate the recyclability of Shenlong in China using SWOT. The main analysis results are as follows. First, provided that the company's current capacity utilization rate is seriously insufficient, reducing staff is one among the effective ways. Second, Shenlong should open a web store to cater to young people's online shopping behavior, and further expand the brand visibility using national mainstream media and online shopping platforms like Taobao and JingDong to market Dongfeng Peugeot and Dongfeng Citroen on the whole network. Third, under the premise of maintaining the present best-selling models, Shenlong should appropriately reduce the amount of models, adjust the assembly capacity ratio of every model and every displacement in real time per the newest market trends, increase the agility of auto companies' production, and timely meet the wants of domestic consumers. Fourth, dual-brand coordination and channel integration are very necessary, and also the profitability and profitability of dealers are going to be further improved, thereby increasing sales. Fifth, target building new energy leading products of Shenlong, strive to attain the forefront of the industry within the sales of recent energy vehicles within 5 years, and gradually expand new energy vehicle products from passenger vehicles to passenger vehicles and commercial vehicles. Finally, the marketing field of Shenlong Automobile should achieve "three major changes", that is, change from a goal-driven type to a demand-driven type, cancel the bundling of outlet invoicing goals and delivery incentive tiers; start from basic capabilities, and set pragmatic and challenging goals; focus Channels, to realize following the activation of outlets, and single store sales increase.

2-Stage Optimal Design and Analysis for Disassembly System with Environmental and Economic Parts Selection Using the Recyclability Evaluation Method

  • Igarashi, Kento;Yamada, Tetsuo;Inoue, Masato
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.52-66
    • /
    • 2014
  • Promotion of a closed-loop supply chain requires disassembly systems that recycle end-of-life (EOL) assembled products. To operate the recycling disassembly system, parts selection is environmentally and economically carried out with non-destructive or destructive disassembly, and the recycling rate of the whole EOL product is determined. As the number of disassembled parts increases, the recycling rate basically increases. However, the labor cost also increases and brings lower profit, which is the difference between the recovered material prices and the disassembly costs. On the other hand, since the precedence relationships among disassembly tasks of the product also change with the parts selections, it is also required to optimize allocation of the tasks in designing a disassembly line. In addition, because information is required for such a design, the recycling rate, profit of each part and disassembly task times take precedence among the disassembly tasks. However, it is difficult to obtain that information in advance before collecting the actual EOL product. This study proposes and analyzes an optimal disassembly system design using integer programming with the environmental and economic parts selection (Igarashi et al., 2013), which harmonizes the recycling rate and profit using recyclability evaluation method (REM) developed by Hitachi, Ltd. The first stage involves optimization of environmental and economic parts selection with integer programming with ${\varepsilon}$ constraint, and the second stage involves optimization of the line balancing with integer programming in terms of minimizing the number of stations. The first and second stages are generally and mathematically formulized, and the relationships between them are analyzed in the cases of cell phones, computers and cleaners.

Magnetic separation of Fe contaminated Al-Si cutting chip scraps and evaluation of solidification characteristics (Fe성분이 혼입된 Al-Si 절삭칩 스크랩의 자력선별 및 응고특성 평가)

  • Kim, Bong-Hwan;Kim, Jun-Kyeom;Lee, Sang-Mok
    • Journal of Korea Foundry Society
    • /
    • v.29 no.1
    • /
    • pp.38-44
    • /
    • 2009
  • Magnetic separation of Fe contaminated Al-Si cutting chip scraps was performed for the recyclability assessment. It was also aimed to investigate the casting and solidification characteristics of the cutting chip scraps. The magnetically separated cutting chip scraps were adequately treated for the casting procedure and test specimens were made into a stepped mold inducing different cooling rates. The test specimens were evaluated by the combined analysis of ICP, Spectroscopy, OM-image analyzer, SEM/EDS, etc. Solidification characteristics of cutting chip scraps were examined as functions of Fe content and cooling rate. It is concluded that the magnetic separation process can be utilized to recycle the Fe contaminated Al-Si cutting chip scraps in the high cooling rate foundry process.

Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine

  • Dharmalingam, Sivanesan;Park, Ki Tae;Lee, Ju-Yeol;Park, Il-Gun;Jeong, Soon Kwan
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.335-341
    • /
    • 2018
  • We report the catalytic effects of metal oxides on the $CO_2$ absorption rate in an aqueous potassium salt of ${\text\tiny{L}}-lysine-HCl$ using the vapor liquid equilibrium method. The best $CO_2$ absorption rate obtained through testing metal oxides in a highly concentrated potassium salt of amino acids (2.0 M) was identified using CuO. The recyclability of the metal oxides was tested over three cycles. The catalyst CuO was found to enhance the absorption rate of $CO_2$ by 61%. A possible mechanism was proposed based on NMR spectroscopy studies. Further, the effect of change in liquid absorbent viscosity on $CO_2$ absorption is discussed.

The Evaluation of the Packaging Properties and Recyclability with Modified Acrylic Emulsion for Flexible Food Paper Coating (유연 종이 식품 포장재의 개질 아크릴 에멀젼 코팅 특성 및 재활용성 평가)

  • Myungho Lee;In Seok Cho;Dong Cheol Lee;Youn Suk Lee
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.3
    • /
    • pp.153-161
    • /
    • 2023
  • The worldwide effects of COVID-19 have led to a surge in online shopping and contactless services. The consumption pattern has caused the issues such as the environmental pollution together with the increase of plastic waste. Reducing the reliance on the petroleum based plastic use for the package and replacing it with environmentally friendly material are the simple ways in order to solve those problems. Paper is an eco-friendly product with high recyclability as the food packaging materials but has still poor barrier properties. A barrier coating on surface of the paper can be achieved with the proper packaging materials featuring water, gas and grease barrier. Polyethylene (PE) or polypropylene (PP) coatings which are generally laminated or coated to paper are widely used in food packaging applications to protect products from moisture and provide water or grease resistance. However, recycling of packaging containing PE or PP matrix is limited and costly because those films are difficult to degrade in the environment. This study investigated the recyclability of modified acrylic emulsion coating papers compared to PE and PP polymer matrixes as well as their mechanical and gas barrier properties. The results showed that PE or modified acrylic emulsion coated papers had better mechanical properties compared to the uncoated paper as a control. PE or PP coating papers showed strong oil resistance property, achieving a kit rating of 12. Those papers also had a significantly higher percentage of screen reject during the recycling process than modified acrylic coated paper which had a screen rejection rate of 6.25%. In addition an uncoated paper had similar value of a screen rejection rate. It may suggest that modified acrylic emulsion coating paper can be more easily recycled than PE or PP coating papers. The overall results of the study found that modified acrylic emulsion coating paper would be a viable alternative to suggest a possible solution to an environmental problem as well as enhancing the weak mechanical and poor gas barrier properties of the paper against moisture.

An Identification System Using QR Codes for Production and Disposal Information of Internet of Things Devices (QR코드 기반 사물인터넷 디바이스의 생산/폐기 정보 식별체계)

  • Lim, Jae-Hyun;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.664-665
    • /
    • 2016
  • This paper proposes an identification system based on QR (Quick Response) code for production and disposal information of Internet of Things (IoT) devices. Three thousands and five hundreds of electronic devices have replaced and discarded in South Korea in a year, and twenty millions to fifty millions tons of e-wastes have happened throughout the world every year. According to Gartner, market research institution, the number of IoT devices will increase from 2.3 billions in 2013 to 30 billions in 2020, however, the regulations and systems which take into account environment were not prepared. The identification systems for reflecting information of devices, which are produced or discarded, are required to resolve the problem. The proposed identification system based on QR code can store much more massive data such as the producer, product's model, serial number, recycling rate, recovering rate, recyclability rate, recoverability rate than RFID (Radio-Frequency Identification). Also, users can immediately recognize production and disposal information by a QR code application in a smartphone.

  • PDF

Implementation of Object Identifier, Mobile RFID and QR Code Exploiting End-of-Life Treatment Information of Internet of Things Devices (사물인터넷 디바이스의 폐기 처리 정보를 활용한 객체 식별자, 모바일 RFID 및 QR 코드 구현)

  • Seo, Jeongwook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.441-447
    • /
    • 2020
  • In a situation in which around 50 million metric tons of electrical and electronic products is generated globally per year, the total installed base of Internet of Things (IoT) devices is projected to amount to around 75 billion worldwide by 2025. However, there is very little research on identification schemes for end-of-life treatment (EoLT) of IoT devices. To address this issue, this paper proposes new identifiers including EoLT information such as recyclability rate (Rcyc) and recoverability rate (Rcov) of an IoT device, recycling rate (RCR) and recovery rate (RVR) of each part in the IoT device, etc. and implements them by using object identifier (OID), mobile radio frequency identification (RFID) and quick response (QR) code. The implemented OID and mobile RFID can be used with cooperation of a remote server via communication networks and the implemented QR code can be used simply with a smartphone app.

Synthesis of Pd/Cu-Fe polymetallic nanoparticles for in situ reductive degradation of p-nitrophenol

  • Wenbin, Zhang;Lanyu, Liu;Jin, Zhao;Fei, Gao;Jian, Wang;Liping, Fang
    • Membrane and Water Treatment
    • /
    • v.13 no.2
    • /
    • pp.97-104
    • /
    • 2022
  • With a small particle size, specific surface area and chemical nature, Pd/Cu-Fe nanocomposites can efficiently remove the organic compounds. In order to understand the applicability for in situ remediation of contaminated groundwater, the degradation of p-nitrophenol by Pd/Cu-Fe nanoparticles was investigated. The degradation results demonstrated that these nanoparticles could effectively degrade p-nitrophenol and near 90% of degradation efficiency was achieved by Pd/Cu-Fe nanocomposites for 120 min treatment. The efficiency of degradation increased significantly when the Pd content increased from 0.05 wt.% and 0.10 wt.% to 0.20 wt.%. Meanwhile, the removal percentage of p-nitrophenol increased from 75.4% and 81.7% to 89.2% within 120 min. Studies on the kinetics of p-nitrophenol that reacts with Pd/Cu-Fe nanocomposites implied that their behaviors followed the pseudo-first-order kinetics. Furthermore, the batch experiment data suggested that some factors, including Pd/Cu-Fe availability, temperature, pH, different ions (SO42-, PO43-, NO3-) and humic acid content in water, also have significant impacts on p-nitrophenol degradation efficiency. The recyclability of the material was evaluated. The results showed that the Pd/Cu-Fe nanoparticles have good recycle performance, and after three cycles, the removal rate of p-nitrophenol is still more than 83%.