• Title/Summary/Keyword: Recursive Least Square Method

Search Result 167, Processing Time 0.032 seconds

External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation (수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현)

  • Jeong, Yoo-Seok;Lee, Cheol-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.

Speech Enhancement Using the Adaptive Noise Canceling Technique with a Recursive Time Delay Estimator (재귀적 지연추정기를 갖는 적응잡음제거 기법을 이용한 음성개선)

  • 강해동;배근성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.33-41
    • /
    • 1994
  • A single channel adaptive noise canceling (ANC) technique with a recursive time delay estimator (RTDE) is presented for removing effects of additive noise on the speech signal. While the conventional method makes a reference signal for the adaptive filter using the pitch estimated on a frame basis from the input speech, the proposed method makes the reference signal using the delay estimated recursively on a sample-by-sample basis. As the RTDEs, the recursion formulae of autocorrelation function (ACF) and average magnitude difference function (AMDF) are derived. The normalized least mean square (NLMS) and recursive least square (RLS) algorithms are applied for adaptation of filter coefficients. Experimental results with noisy speech demonstrate that the proposed method improves the perceived speech quality as well as the signal-to-noise ratio and cepstral distance when compared with the conventional method.

  • PDF

A Study on Korean Phoneme Classification using Recursive Least-Square Algorithm (Recursive Least-Square 알고리즘을 이용한 한국어 음소분류에 관한 연구)

  • Kim, Hoe-Rin;Lee, Hwang-Su;Un, Jong-Gwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.60-67
    • /
    • 1987
  • In this paper, a phoneme classification method for Korean speech recognition has been proposed and its performance has been studied. The phoneme classification has been done based on the phonemic features extracted by the prewindowed recursive least-square (PRLS) algorithm that is a kind of adaptive filter algorithms. Applying the PRLS algorithm to input speech signal, precise detection of phoneme boundaries has been made, Reference patterns of Korean phonemes have been generated by the ordinery vector quantization (VQ) of feature vectors obtained manualy from prototype regions of each phoneme. In order to obtain the performance of the proposed phoneme classification method, the method has been tested using spoken names of seven Korean cities which have eleven different consonants and eight different vowels. In the speaker-dependent phoneme classification, the accuracy is about $85\%$ considering simple phonemic rules of Korean language, while the accuracy of the speaker-independent case is far less than that of the speaker-dependent case.

  • PDF

Real-Time Building Load Prediction by the On-Line Weighted Recursive Least Square Method (실시간 가중 회기최소자승법을 사용한 익일 부하예측)

  • 한도영;이재무
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.6
    • /
    • pp.609-615
    • /
    • 2000
  • The energy conservation is one of the most important issues in recent years. Especially, the energy conservation through improved control strategies is one of the most highly possible area to be implemented in the near future. The energy conservation of the ice storage system can be accomplished through the improved control strategies. A real time building load prediction algorithm was developed. The expected highest and the lowest outdoor temperature of the next day were used to estimate the next day outdoor temperature profile. The measured dry bulb temperature and the measured building load were used to estimate system parameters by using the on-line weighted recursive least square method. The estimated hourly outdoor temperatures and the estimated hourly system parameters were used to predict the next day hourly building loads. In order to see the effectiveness of the building load prediction algorithm, two different types of building models were selected and analysed. The simulation results show less than 1% in error for the prediction of the next day building loads. Therefore, this algorithm may successfully be used for the development of improved control algorithms of the ice storage system.

  • PDF

Real-time Projectile Motion Trajectory Estimation Considering Air Resistance of Obliquely Thrown Object Using Recursive Least Squares Estimation (비스듬히 던진 물체의 공기저항을 고려한 재귀 최소 자승법 기반 실시간 포물선 운동 궤적 추정)

  • Jeong, Sangyoon;Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.3
    • /
    • pp.427-432
    • /
    • 2018
  • This paper uses a recursive least squares method to estimate the projectile motion trajectory of an object in real time. The equations of motion of the object are obtained considering the air resistance which occurs in the actual experiment environment. Because these equations consider air resistance, parameter estimation of nonlinear terms is required. However, nonlinear recursive least squares estimation is not suitable for estimating trajectory of projectile in that it requires a lot of computation time. Therefore, parameter estimation for real-time trajectory prediction is performed by recursive least square estimation after using Taylor series expansion to approximate nonlinear terms to polynomials. The proposed method is verified through experiments by using VICON Bonita motion capture system which can get three dimensional coordinates of projectile. The results indicate that proposed method is more accurate than linear Kalman filter method based on the equations of motion of projectile that does not consider air resistance.

A Study on Real-Time Inertia Estimation Method for STSAT-3 (과학기술위성 3호 실시간 관성모멘트 추정 기법 연구)

  • Kim, Kwangjin;Lee, Sangchul;Oh, Hwa-Suk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.4
    • /
    • pp.1-6
    • /
    • 2012
  • The accurate information of mass properties is required for the precise control of the spacecraft. The mass properties, mass and inertia, are changeable by some reasons such as consumption of propellant, deployment of solar panel, sloshing, environmental effect, etc. The gyro-based attitude data including noise and bias reduces the control accuracy so it needs to be compensated for improvement. This paper introduces a real-time inertia estimation method for the attitude determination of STSAT-3, Korea Science Technology Satellite. In this method we first filter the gyro noise with the Extended Kalman Filter(EKF), and then estimate the moment of inertia by using the filtered data from the EKF based on the Recursive Least Square(RLS).

Intelligent fuzzy weighted input estimation method for the input force on the plate structure

  • Lee, Ming-Hui;Chen, Tsung-Chien
    • Structural Engineering and Mechanics
    • /
    • v.34 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • The innovative intelligent fuzzy weighted input estimation method which efficiently and robustly estimates the unknown time-varying input force in on-line is presented in this paper. The algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone, which is capable of providing a reasonable compromise between the tracking capability and the flexibility against noises. The capability of this inverse method are demonstrated in the input force estimation cases of the plate structure system. The proposed algorithm is further compared by alternating between the constant and adaptive weighting factors. The results show that this method has the properties of faster convergence in the initial response, better target tracking capability, and more effective noise and measurement bias reduction.

A Novel Method for the Identification of the Rotor Resistance and Mutual Inductance of Induction Motors Based on MRAC and RLS Estimation

  • Jo, Gwon-Jae;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.492-501
    • /
    • 2018
  • In the rotor-flux oriented control used in induction motors, the electrical parameters of the motors should be identified. Among these parameters, the mutual inductance and rotor resistance should be accurately tuned for better operations. However, they are more difficult to identify than the stator resistance and stator transient inductance. The rotor resistance and mutual inductance can change in operations due to flux saturation and heat generation. When detuning of these parameters occurs, the performance of the control is degenerated. In this paper, a novel method for the concurrent identification of the two parameters is proposed based on recursive least square estimation and model reference adaptive control.

The Fault Location Estimation Algorithm in Transmission Line Using a Recursive Least Square Error Method (순환형 최소자승법을 이용한 송전선로의 고장점 추정 알고리즘)

  • Yoon, C.D.;Lee, J.J.;Jung, H.S.;Shin, M.C.;Choi, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.203-205
    • /
    • 2002
  • This paper presents the fault location estimation algorithm in transmission line using a recursive least square error method (RLSE). To minimize the computational burden of the digital relay a RLSE approach is used. Computer simulation results of the RLSE algorithm seem promising, indicating that it should be considered for further testing and evaluation.

  • PDF

Inertia and Coefficient of Friction Estimation of Electric Motor using Recursive Least-Mean-Square Method (순환 최소자승법을 이용한 전동기 관성과 마찰계수 추정)

  • Kim, Ji-Hye;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.2
    • /
    • pp.311-316
    • /
    • 2007
  • This paper proposes the algorithm which estimates moment of the inertia and friction coefficient of friction for high performance speed control of electric motor. The proposed algorithm finds the moment of inertia and friction coefficient of friction by observing the speed error signal generated by the speed observer and using Recursive Least-Mean-Square method(RLS). By feedbacking the estimated inertia and estimated coefficient of friction to speed controller and full order speed observer, then the errors of the inertia and coefficient of friction and speed due to the inaccurate initial value are decreased. Inertia and coefficient of friction converge to the actual value within several times of speed changing. Simulation and actual experiment results are given to demonstrate the effectiveness of the proposed parameter estimator.