• Title/Summary/Keyword: Recursive Least Square

Search Result 261, Processing Time 0.024 seconds

Instantaneous Voltage Sag Detection for Dynamic Voltage Restorer using Recursive Least Square Method (재귀형 최소 자승법을 이용한 동적 전압 보상기의 순시전압강하 검출)

  • Ji, Kyun-Seon;Jou, Sung-Tak;Lee, Kyo-Beum
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.134-135
    • /
    • 2014
  • 본 논문에서는 동적 전압 보상기를 위한 속응성을 향상시킨 입력 전압의 크기를 검출하는 기법을 제안한다. 동적 전압 보상기가 계통 전압에서 발생한 순시전압강하를 보상하기 위해서는 강하된 전압을 검출해야 한다. 외란에 강인하고 빠른 응답 특성을 가지는 재귀형 최소 자승법을 사용하여 입력 전압으로 부터 강하된 전압의 크기를 구하고 보상전압을 생성한다. 생성된 보상전압은 입력 전압에 더해져 안정된 부하전압을 공급한다. 시뮬레이션 결과를 통해 제안하는 방법의 타당성을 검증한다.

  • PDF

Improved SRF-PLL using Recursive Least square Method under Unbalanced Grid Condition (불평형 전원조건하의 재귀형 최소자승법을 이용한 향상된 SRF-PLL)

  • Moon, Seok-Hwan;Kim, Ji-won;Park, Byoung-Gun;Kim, Jong-Mu;Lee, Ki-chang;Ha, Hyung-Uk;Lee, Jung-Uk;Park, Byeong-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.219-220
    • /
    • 2014
  • 기존의 SRF-PLL방법은 구현이 간단하고 정상전원에서 위상각 추정 성능이 우수하지만 불평형 전원하에서 위상각 추정 성능이 저하된다. 본논문에서는 상간전압의 위상변화, 상전압의 크기변동 및 오프셋이 발생된 불평형 전원하에서 변동된 값들을 실시간으로 보상하여 위상각을 검출하는 재귀형 최소 자승법을 이용한 SRF-PLL방법을 제안한다.

  • PDF

Online Capacitance Estimation of Supercapacitor Bank Using Recursive Least Square Method (재귀최소자승법을 이용한 수퍼커패시터 뱅크의 커패시턴스 실시간 추정방법)

  • Cho, Sungwoo;Shin, Gyubeom;Jo, Hyunsik;Cha, Hanju
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.449-450
    • /
    • 2015
  • 본 논문에서는 재귀최소자승법을 이용한 수퍼커패시터 뱅크의 실시간 커패시턴스 추정방법에 대해 서술하였으며, 커패시터의 수명은 초기용량에서 약 25%가 감소한 경우 수명을 다했다고 판단한다. 수명을 다한 커패시터를 사용할 경우 시스템의 성능과 안전을 보장할 수 없으므로 커패시터를 교체할 적절한 시기를 판단하는 것은 매우 중요하다. 따라서 본 논문에서는 재귀최소자승법으로 수퍼커패시터 뱅크의 커패시턴스를 측정할 수 있는 방법을 제안하였고, 이를 시뮬레이션을 통해 타당성을 검증하였다.

  • PDF

Adaptive Control Incorporating Neural Network for a Pneumatic Servo Cylinder (공압 서보실린더의 신경회로망 결합형 적응제어)

  • Jang Yun Seong;Cho Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.88-95
    • /
    • 2005
  • This paper presents a design scheme of model reference adaptive control incorporating a Neural Network for a pneumatic servo system. The parameters of discrete-time model of plant are estimated by using the recursive least square method. Neural Network is utilized in order to compensate the nonlinear nature of plant such as compressibility of air and frictions present in cylinder. The experiment of a trajectory tracking control using the proposed control scheme has been performed and its effectiveness has been proved by comparing with the results of a model reference adaptive control.

A novel OCV Hysteresis Modeling for SOC estimation of Lithium Iron Phosphate battery (리튬인산철 배터리를 위한 새로운 히스테리시스 모델링)

  • Nguyen, Thanh Tung;Khan, Abdul Basit;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.75-76
    • /
    • 2016
  • The relationship of widely used Open circuit Voltage (OCV) versus State of Charge (SOC) is critical for any reliable SOC estimation technique. However, the hysteresis existing in all type of battery which has been come to the market leads this relationship to a complicated one, especially in Lithium Iron Phosphate (LiFePO4) battery. An accurate model for hysteresis phenomenon is essential for a reliable SOC identification. This paper aims to investigate and propose a method for hysteresis modeling. The SOC estimation is done by using Extended Kalman Filter (EKF), the parameter of the battery is modeled by Auto Regressive Exogenous (ARX) and estimated by using Recursive Least Square (RLS) filter to tract each element of the parameter of the model.

  • PDF

A Study on SOH estimation for lithium-ion battery based on joint estimation between partial capacity and recursive least square estimation method (미소 용량 및 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법 연구)

  • Park, Seongyun;Cho, Inho;Ryu, Joonhyoung;Kim, Youngmi;Park, Sungbeak;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.209-211
    • /
    • 2020
  • 운송기관의 온실가스 저감을 위해 배터리-수소연료전지 하이브리드 철도추진시스템에 대한 연구가 활발히 진행되고 있다. 이 중 배터리는 빠른 응답 특성으로 하이브리드 철도추진 시스템의 효율을 극대화 시키기 위해 주요 전원으로 사용되고 있어, 시스템의 안전성 및 신뢰성을 높이기 위해 정확한 열화추정이 요구되고 있다. 본 논문에서는 사전 모델의 수립이 필요하지 않고 미소 용량 및 폐회로 제어가 가능한 재귀 최소제곱 추정 기법을 이용한 리튬이온 배터리의 SOH 추정 기법을 제안하였으며, 1S18P 배터리 모듈을 통해 열화 추정결과를 검증하였다.

  • PDF

A Fault Tolerant Control Technique for Hybrid Modular Multi-Level Converters with Fault Detection Capability

  • Abdelsalam, Mahmoud;Marei, Mostafa Ibrahim;Diab, Hatem Yassin;Tennakoon, Sarath B.
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.558-572
    • /
    • 2018
  • In addition to its modular nature, a Hybrid Modular Multilevel Converter (HMMC) assembled from half-bridge and full-bridge sub-modules, is able to block DC faults with a minimum number of switching devices, which makes it attractive for high power applications. This paper introduces a control strategy based on the Root-Least Square (RLS) algorithm to estimate the capacitor voltages instead of using direct measurements. This action eliminates the need for voltage transducers in the HMMC sub-modules and the associated communication link with the central controller. In addition to capacitor voltage balancing and suppression of circulating currents, a fault tolerant control unit (FTCU) is integrated into the proposed strategy to modify the parameters of the HMMC controller. On advantage of the proposed FTCU is that it does not need extra components. Furthermore, a fault detection unit is adapted by utilizing a hybrid estimation scheme to detect sub-module faults. The behavior of the suggested technique is assessed using PSCAD offline simulations. In addition, it is validated using a real-time digital simulator connected to a real time controller under various normal and fault conditions. The proposed strategy shows robust performance in terms of accuracy and time response since it succeeds in stabilizing the HMMC under faults.

Performance Analysis of Receiver for Underwater Acoustic Communications Using Acquisition Data in Shallow Water (천해역 취득 데이터를 이용한 수중음향통신 수신기 성능분석)

  • Kim, Seung-Geun;Kim, Sea-Moon;Yun, Chang-Ho;Lim, Young-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.5
    • /
    • pp.303-313
    • /
    • 2010
  • This paper describes an acoustic communication receiver structure, which is designed for QPSK (Quadrature Phase Shift Keying) signal with 25 kHz carrier frequency and 5 kHz symbol rate, and takes samples from received signal at 100 kHz sampling rate. Based on the described receiver structure, optimum design parameters, such as number of taps of FF (Feed-Forward) and FB (Feed-Back) filters and forgetting factor of RLS (Recursive Least-Square) algorithm, of joint equalizer are determined to minimize the BER (Bit Error Rate) performance of the joint equalizer output symbols when the acquisition data in shallow water using implemented acoustic transducers is decimated at a rate of 2:1 and then enforced to the input of receiver. The transmission distances are 1.4 km, 2.9 km, and 4.7 km. Analysis results show that the optimum number of taps of FF and FB filters are different according to the distance between source and destination, but the optimum or near optimum value of forgetting factor is 0.997. Therefore, we can reach a conclusion that the proper receiver structure could change the number of taps of FF and FB filters with the fixed forgetting factor 0.997 according to the transmission distance. Another analysis result is that there are an acceptable performance degradation when the 16-tap-length simple filter is used as a low-pass filter of receiver instead of 161-tap-length matched filter.

Receivers for Spatially Multiplexed Space-Time Block Coded Systems : Reduced Complexity (시공간블록부호화를 적용한 공간다중화 시스템 수신기 : 복잡도 감소 방안)

  • Hwang Hyeon Chyeol;Shin Seung Hoon;Lee Cheol Jin;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1244-1252
    • /
    • 2004
  • In this paper, we derive some properties of linear detectors (zero forcing or minimum mean square error) at spatial multiplexing systems with alamouti's space-time block code. Based on the derived properies, this paper proposes low-complexity receivers. Implementing MMSE detector adaptively, the number of weight vectors to be calculated and updated is greatly reduced with the derived properties compared to the conventional methods. In the case of recursive least square algorithm, with the proposed approach computational complexity is reduced to less than the half. We also identify that sorted QR decomposition detector, which reduces the complexity of V-Blast detector, has the same properties for unitary matrix Q and upper triangular matrix R. A complexity reduction of about 50%, for sorted QR decomposition detector, can be achieved by using those properties without the loss of performance.

A Comparative Study on the Forecasting Accuracy of Econometric Models :Domestic Total Freight Volume in South Korea (계량경제모형간 국내 총화물물동량 예측정확도 비교 연구)

  • Chung, Sung Hwan;Kang, Kyung Woo
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • This study compares the forecasting accuracy of five econometric models on domestic total freight volume in South Korea. Applied five models are as follows: Ordinary Least Square model, Partial Adjustment model, Reduced Autoregressive Distributed Lag model, Vector Autoregressive model, Time Varying Parameter model. Estimating models and forecasting are carried out based on annual data of domestic freight volume and an index of industrial production during 1970~2011. 1-year, 3-year, and 5-year ahead forecasting performance of five models was compared using the recursive forecasting method. Additionally, two forecasting periods were set to compare forecasting accuracy according to the size of future volatility. As a result, the Time Varying Parameter model showed the best accuracy for forecasting periods having fluctuations, whereas the Vector Autoregressive model showed better performance for forecasting periods with gradual changes.