본 논문에서는 인지 무선 통신을 위한 새로운 순환 신경망 기반 스펙트럼 센싱 기법을 제안한다. 제안하는 기법은 주사용자에 대한 정보가 전혀 없는 상황에서 에너지 검출을 통해 신호 존재 유무를 판단한다. 제안 기법은 센싱하고자 하는 전체 대역을 고려하여 수신신호를 고속으로 샘플링 후 이 신호의 FFT (fast Fourier transform)를 통해 주파수 스펙트럼으로 변환한다. 이 스펙트럼 신호는 채널 대역폭 단위로 자른 후 순환 신경망에 입력하여 해당 채널이 사용중인지 비어있는지 판정한다. 제안하는 기법의 성능은 컴퓨터 모의실험을 통해 확인하는데 그 결과에 따르면 기존 문턱값 기반 기법보다 2 [dB] 이상 우수하며 합성곱 신경망 기법과 유사한 성능을 보인다. 또한, 실제 실내환경에서 실험도 수행하는데 이 결과에 따르면 제안하는 기법이 기존 문턱값 기반 방식 및 합성곱 신경망 방식보다 4 [dB] 이상 우수한 성능을 보인다.
The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.
에너지 사용량의 증가와 친환경 정책으로 인해 건물 에너지를 효율적으로 소비할 필요가 있으며, 이를 위해 딥러닝 기반 이상 전력 탐지가 수행되고 있다. 수집이 어려운 이상치 데이터의 특징으로 인해 Recurrent Neural Network(RNN) 기반 오토인코더를 활용한 복원 에러 기반으로 이상 탐지가 수행되고 있으나, 시계열 특징을 온전히 학습하는데 시간이 오래 걸리고 학습 데이터의 노이즈에 민감하다는 단점이 있다. 본 논문에서는 이러한 한계를 극복하기 위해 Temporal Convolutional Network(TCN)과 UnSupervised Anomaly Detection for multivariate time series(USAD)를 결합한 TCN-USAD를 제안한다. 제안된 모델은 TCN 기반 오토인코더와 두 개의 디코더와 적대적 학습을 사용하는 USAD 구조를 활용하여 빠르게 시계열 특징을 온전히 학습할 수 있고 강건한 이상 탐지가 가능하다. TCN-USAD의 성능을 입증하기 위해 2개의 건물 전력 사용량 데이터 세트를 사용하여 비교 실험을 수행한 결과, TCN 기반 오토인코더는 RNN 기반 오토 인코더 대비 빠르고 복원 성능이 우수하였으며, 이를 활용한 TCN-USAD는 다른 이상 탐지 모델 대비 약 20% 개선된 F1-Score를 달성하여 뛰어난 이상 탐지 성능을 보였다.
본 연구에선 딥러닝 기반 음성 신호로부터 음성의 특징을 추출하고 분석하여 필터를 생성하고, 생성된 필터를 이용하여 음성 신호로부터 감정을 인식하는 모델을 제안하고 감정 인식 정확도 성능을 평가하였다. 제안한 모델을 사용한 시뮬레이션 결과에 따르면, DNN (Deep Neural Network)과 RNN (Recurrent Neural Network)의 평균 감정인식 정확도는 각각 84.59%와 84.52%으로 매우 비슷한 성능을 나타냈다. 하지만 DNN의 시뮬레이션 소요 시간은 RNN보다 약 44.5% 짧은 시뮬레이션 시간으로 감정을 예측할 수 있는 것을 확인하였다.
This paper presents a training method for neural networks and the employment of MSE (mean scare error) values as the basis of a decision regarding the identity claim of a speaker in a recurrent neural networks based speaker verification system. Recurrent neural networks (RNNs) are employed to capture temporally dynamic characteristics of speech signal. In the process of supervised learning for RNNs, target outputs are automatically generated and the generated target outputs are made to represent the temporal variation of input speech sounds. To increase the capability of discriminating between the true speaker and an impostor, a discriminative training method for RNNs is presented. This paper shows the use and the effectiveness of the MSE value, which is obtained from the Euclidean distance between the target outputs and the outputs of networks for test speech sounds of a speaker, as the basis of speaker verification. In terms of equal error rates, results of experiments, which have been performed using the Korean speech database, show that the proposed speaker verification system exhibits better performance than a conventional hidden Markov model based speaker verification system.
This paper propose a prefilter type inverse control algorithm using chaotic neural networks. Since the chaotic neural networks show robust characteristics in approximation and adaptive learning for nonlinear dynamic system, the chaotic neural networks are suitable for controlling robotic manipulators. The structure of the proposed prefilter type controller compensate velocity of the PD controller. To estimate the proposed controller, we implemented to the Cartesian space control of three-axis PUMA robot and compared the final result with recurrent neural network(RNN) controller.
Recently, deep learning that is the most popular and effective class of machine learning algorithms is widely applied to various industrial areas. A number of research on various topics about structural engineering was performed by using artificial neural networks, such as structural design optimization, vibration control and system identification etc. When nonlinear semi-active structural control devices are applied to building structure, a lot of computational effort is required to predict dynamic structural responses of finite element method (FEM) model for development of control algorithm. To solve this problem, an artificial neural network model was developed in this study. Among various deep learning algorithms, a recurrent neural network (RNN) was used to make the time history response prediction model. An RNN can retain state from one iteration to the next by using its own output as input for the next step. An eleven-story building structure with semi-active tuned mass damper (TMD) was used as an example structure. The semi-active TMD was composed of magnetorheological damper. Five historical earthquakes and five artificial ground motions were used as ground excitations for training of an RNN model. Another artificial ground motion that was not used for training was used for verification of the developed RNN model. Parametric studies on various hyper-parameters including number of hidden layers, sequence length, number of LSTM cells, etc. After appropriate training iteration of the RNN model with proper hyper-parameters, the RNN model for prediction of seismic responses of the building structure with semi-active TMD was developed. The developed RNN model can effectively provide very accurate seismic responses compared to the FEM model.
본 논문은 다양한 지진 이벤트 분류를 위해 지진 데이터의 정적인 특성과 동적인 특성을 동시에 반영할 수 있는 합성곱 순환 신경망(Convolutional Recurrent Neural Net, CRNN) 구조를 제안한다. 중규모 지진뿐만 아니라 미소 지진, 인공 지진을 포함한 지진 이벤트 분류 문제를 해결하려면 효과적인 특징 추출 및 분류 방법이 필요하다. 본 논문에서는 먼저 주의 기반 합성곱 레이어를 통해 지진 데이터의 정적 특성을 추출 하게 된다. 추출된 특징은 다중 입력 단일 출력 장단기메모리(Long Short-Term Memory, LSTM) 네트워크 구조에 순차적으로 입력되어 다양한 지진 이벤트 분류를 위한 동적 특성을 추출하게 되며 완전 연결 레이어와 소프트맥스 함수를 통해 지진 이벤트 분류를 수행한다. 국내외 지진을 이용한 모의 실험 결과 제안된 모델은 다양한 지진 이벤트 분류에 효과적인 모습을 보여 주었다.
Long Short-term Memory Network(LSTM) 기반 Recurrent Neural Network(RNN)는 순차 데이터를 모델링 할 수 있는 딥 러닝 모델이다. 기존 RNN의 그래디언트 소멸 문제(vanishing gradient problem)를 해결한 LSTM RNN은 멀리 떨어져 있는 이전의 입력 정보를 볼 수 있다는 장점이 있어 음성 인식 및 필기체 인식 등의 분야에서 좋은 성능을 보이고 있다. 또한 LSTM RNN 모델에 의존성(전이 확률)을 추가한 LSTM CRF모델이 자연어처리의 한 분야인 개체명 인식에서 우수한 성능을 보이고 있다. 본 논문에서는 한국어 문장의 지배소가 문장 후위에 나타나는 점에 착안하여 Backward 방식의 LSTM CRF 모델을 제안하고 이를 한국어 의미역 결정에 적용하여 기존 연구보다 더 높은 성능을 얻을 수 있음을 보인다.
본 논문에서는 향상된 연산 능력을 가진 하드웨어와 알고리즘의 혼합을 통하여 음성 향상을 위한 정확한 음성 검출기 구현을 목적으로 하였다. 음성은 음소의 나열로 구성되어있으며 음성 모델을 세우는데 적합한 방법은 이전의 정보를 이용하는 순환 신경망 (recurrent neural network, RNN)을 사용하는 것이다. 실제 존재하는 모든 잡음에 대하여 학습한 모델을 제시하는 것은 사실상 불가능 하므로 이를 극복하고자 음소기반 학습을 진행하였다. 학습의 결과로 세워진 모델을 기반으로 새로운 음성 신호에서 음성을 검출하고 그 결과를 이용하여 음성 향상을 진행하였다. 순환 신경망과 음소기반 학습은 프레임 별 높은 상관성을 가진 음성 신호에서 좋은 성능을 얻을 수 있었으며 음성 검출기의 성능을 검증하기 위하여 라벨 데이터와 음성 검출결과를 비교하고 다양한 잡음 환경에서 객관적 음질 평가를 진행하여 기존의 음성 향상 알고리즘과 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.