• Title/Summary/Keyword: Rectus femoris muscle

Search Result 349, Processing Time 0.022 seconds

The Effects of Quadriceps Femoris Muscle activation by Closed and Open kinetic chain Exercises (열린사슬운동과 닫힌사슬운동이 넙다리네갈래근의 근 활성도에 미치는 영향)

  • Kim, Hyoungsu;Kim, Eunyoung;Han, Jiwon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.1
    • /
    • pp.71-80
    • /
    • 2015
  • Purpose: The purpose of this study was to compared the muscle activities of vastus medialis, vastus lateralis, rectus femoris in open kinetic chain and closed kinetic chain. Methods: Subjects of the study were 30 adults students. They were divided into 2 group, one for open kinetic chain and other for closed kinetic chain of extension, flexion, the maximum extension for vastus medialis, vastus latarealis, rectus femoris muscle activation. Results: Rectus femoris increased open kinetic chain group about all posture and vastus medialis increased open kinetic chain group about the maximum extension and flexion. and vastus lateralis increased open kinetic chain group about the maximum extension and flexion. Conclusion: Muscle activation are at the highest with the open kinetic chain in vastus medialis, vastus lateralis, rectus femoris. probably steady exercise thinked for open kinetic chain and closed kinetic chain.

Effects of DMTU, SOD and Ischemic Preconditioning on the Ultrastructural Changes of the Rectus Femoris Muscles in Rats after Ischemia and Reperfusion (SOD, DMTU및 허혈양상화 처치가 허혈 및 재관류에 의한 흰쥐 넙다리곧은근의 미세구조 변화에 미치는 영향)

  • Paik, Doo-Jin;Lim, Jae-Hyun;Chung, Ho-Sam
    • Applied Microscopy
    • /
    • v.27 no.3
    • /
    • pp.333-346
    • /
    • 1997
  • The ischemia and reperfusion injury of the skeletal muscles is caused by generation of reactive oxygen during ischemia and reperfusion. It is well known that over 4 hours of ischemia injures the skeletal muscles irreversibly. The author has demonstrated the effects of SOD (superoxide dismutase), DMTU (dimethyl thiourea) and ischemic preconditioning on ultrastructural changes of the muscle fibers in the rectus femoris muscles after 4 hours of ischemia and 1 day and 3 days of reperfusion. A total of 72 healthy Sprague-Dawley rats weighing from 200 gm to 250 gm were used as experimental animals. Under urethane(1.15 g/kg, IP, 2 times) anesthesia, lower abdominal incision was done and the left common iliac artery was occluded by using vascular clamp for 4 hours. The left rectus femoris muscles were obtained at 1 and 3 days after the removal of vascular clamp. The SOD (15,000 unit/kg) or DMTU (500 mg/kg) were administered intraperitoneally at 1 hour before induction of ischemia. The ischemic preconditioned group underwent three episodes of 5 minutes occlusion and 5 minutes reperfusion followed by 4 hours of ischemia and 1 day and 3 days of reperfusion. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observation. All specimens were stained with uranyl acetate and lead citrate and then observed with Hitachi-600 transmission electron microscope. The results were as follows: 1. SOD or DMTU alone did not affect the ultrastructure of muscle fibers in the rectus femoris muscles. The electron density of mitochondrial matrix was decreased by ischemic preconditioning. 2. Dilated cisternae of sarcoplasmic reticulum, triad, mitochondria and the loss of myofilament in the sarcomere were observed in the 4 hours ischemia and 1 day reperfused rectus femoris muscles. Markedly changed sarcoplasmic reticulum, triad, disordered or loss of myofilament, indistinct A-band and I-band, and irregular electron lucent M -line and Z-line are seen in the 4 hours ischemia and 3 days reperfused rectus femoris muscles. 3. SOD reduced the changes of organelles in the muscle fibers of the 4 hours ischemia and 1 day reperfused rectus femoris muscles of the rats, but SOD did not affect the changes of muscle fibers in the 4 hours ischemia and 3 days reperfused muscles. On the other hand, DMTU markedly attenuated considerably the ultrastructural change of the 4 hours ischemia and 1 day or 3 days reperfused rectus femoris muscles. 4. By the ischemic preconditioning, the change was attenuated remarkably in the 4 hours ischemia and 1 day reperfused rectus femoris muscles. As the ischemic reperfused changes of muscle fibers were regenerated or recovered by ischemic preconditioning, the ultrastructures of them were similar to those of normal control in the 4 hours ischemia and 3 days reperfused rectus formoris muscles. Consequently, it is suggested that DMTU is stronger inhibitor to ischemic reperfused change than SOD. The ischemia and reperfusion-induced muscular damage is remarkably inhibited by ischemic preconditioning.

  • PDF

Differences in EMG of Trunk and Lower Limb According to Attack Method and Phase During Volleyball

  • Jeong, Hwan Jong;Baek, Gwang Eon;Kim, Ki Hong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.143-151
    • /
    • 2021
  • The purpose of our study is to confirm the trend of the muscle activity of the trunk and lower limb muscles by the attack method and phase during volleyball exercise. To achieve this purpose, spike serve and spike were conducted for 9 male middle school students, and at that time, it was divided into four phase, such as run jump, take off, impact, and follow, and the rectus abdominis, erector spine, and left rectus femoris, left biceps femoris, left anterior tibialis, left gastrocnemius midialis, right rectus femoris, right biceps femoris, right anterior tibialis, right gastrocnemius midialis, were examined. Spike serve and spike were each performed three times, and randomly cross-allocated to extract accurate data. We was no difference in all muscles according to the attack method, and the muscle activity of the rectus abdominis was highest in the impact phase and the muscle activity of the vertebral spine muscle was highest in the close-up phase. In addition, all of the measured left and right lower limb muscles showed the highest muscle activity between the assisted devices. As a result, We found out that regardless of the method of spike serve and spike, the lower limbs in the run-up phase for a high jump, the vertebrae in the take off phase, the preparation phase for hitting the ball strongly, and in the impact phase at the moment of hitting the ball. It can be seen that it exerts the greatest power in the rectus abdominis.

The Effects of Lower Muscle Activity of Squat Exercise on Supporting Surface and Visual Feedback (지지면과 시각적 피드백의 차이에 따른 스쿼트 운동시 일부 하지 근 활성도에 미치는 영향)

  • Lee, Jin;Bang, Hyun-Soo
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.1
    • /
    • pp.20-30
    • /
    • 2018
  • Background: This study evaluates the effects of lower muscle activity of squat exercise on supporting surface and visual feedback. Methods: The subjects include 30 healthy subjects. To measure muscle activation of the lower limb during squat exercise(stable and unstable surface, visual and unvisual). For evaluation of muscle activation(rectus femoris, biceps femoris), was measured using the Electromyogram, EMG was used. Results: The results shows that Rectus Femoris(RF) and Biceps Femoris(BF) muscle activations were significantly (p<0.05) difference in unvisual-unstable surface(USUV), unvisual-stable surface(SUV), visual-unstable surface(USA), and visual-stable surface(SV) during squat exercise. Conclusion: Squat exercise can improve muscle activation of the lowe limb. particularly, unvisual-unstable surface during squat exercise can improve muscle activation of the lowe limb.

Effects of Proprioceptive Neuromuscular Facilitation Combined with Auricular Acupuncture on Activation of the Leg Muscles of Strok e Patients (이침을 병행한 고유수용성신경근촉진법이 뇌졸중 환자의 다리 근활성도에 미치는 영향)

  • Jeong-Il Kang;Ji-Wei Li
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • PURPOSE: This study analyzed how proprioceptive neuromuscular facilitation (PNF) combined with auricular acupuncture affected the activation of the leg muscles of stroke patients and measured the effects of this combination to provide clinical data. METHODS: The subjects were divided randomly into experimental group I, which received PNF combined with auricular acupuncture, and experimental group II, which received PNF alone. Each group had ten members. A 30-minute intervention was performed four days a week for six weeks. Before the six weeks of intervention, pre-tests were conducted to measure muscle activation in the legs. After six weeks, post-tests were also conducted to measure muscle activation in the legs. RESULTS: Experimental group I showed a statistically significant difference in muscle rectus femoris, muscle biceps femoris, muscle tibialis anterior, and muscle soleus. Experimental group II also showed a statistically significant difference in the muscle rectus femoris, muscle biceps femoris, muscle tibialis anterior, and muscle soleus (p < .05). In a between-group comparison of the changes, a statistically significant difference was observed between the two groups in terms of muscle rectus femoris, muscle biceps femoris, muscle tibialis anterior, and muscle soleus (p < .05). CONCLUSION: Intervention in experimental group I increased the activation of the leg muscles more effectively because auricular acupuncture was applied to various spots on the ear corresponding to the spleen, liver, kidney, pelvis, knee, ankle, and toe. Auricular acupuncture is expected to be used more widely in the future because it is a safe way of stimulating muscle activation.

Muscle Elasticity Changes in the Presence or Absence of Elastic Band Resistance During Bridge Exercise Using Gymball (짐볼을 이용한 교각운동 시 탄성밴드 저항 유·무에 따른 근탄성도의 변화)

  • Kim, Myung-Chul;Huh, Jun;Kim, Hae-In
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.3
    • /
    • pp.145-153
    • /
    • 2021
  • Purpose : The purpose of this study was to compare and analyze whether there are changes in muscle elasticity when resistance using an elastic band is present or absent during a bridge exercise on an unstable surface with a gymball. Methods : Eighteen healthy adult college students attending E University in Gyeonggi-do, who voluntarily agreed to participate were included in this study. The subjects were instructed to perform the bridge exercise using a gymball both without resistance and with resistance using an elastic band. Myoton was used during the exercise to measure the elasticity of the rectus abdominis and biceps femoris muscles. Results : There was a significant difference in the stiffness of the rectus abdominis muscle on both sides before and after using the elastic band (p<.05). however, no significant difference was observed in the biceps femoris on either side (p>.05). Based on the evaluation of the frequency before and after using the elastic band, no significant difference was observed between the rectus abdominis and biceps femoris muscles on both sides (p>.05). The logarithmic decrement was significantly different in the right rectus abdominis muscle (p<.05), and there was no significant difference in the left rectus abdominis and both biceps femoris (p>.05). Conclusion : Resistance exercise using an elastic band is more effective in improving elasticity of the rectus abdominis muscle than without a elastic band during bridge exercise with a gymball.

Influence of Transcranial Direct Current Stimulation on Lower Limb Muscle Activation and Balance Ability in Soccer Player

  • Yang, Dae Jung;Park, Seung Kyu;Uhm, Yo Han
    • The Journal of Korean Physical Therapy
    • /
    • v.30 no.6
    • /
    • pp.211-217
    • /
    • 2018
  • Purpose: This study is to investigate influence of tDCS on lower limb muscle activity and balance ability in soccer player. Methods: Sessions were conducted with 15 subjects in tDCS group and 15 in action observation training group for 20 minutes, 5 sessions a week, for 8 weeks. All soccer players underwent 30 minutes of plyometric training before main exercise. To evaluate lower limb muscle activation, rectus femoris and biceps femoris were taken measure using surface electromyogram system and to evaluate balance ability, surface area, whole path length, limited of stability were measured using biorescue. Results: Regarding balance shown in surface area, whole path length, limited of stability and muscle activation in rectus femoris and biceps femoris, tDCS group showed more significant change than action bservation training group. Conclusion: Therefore, intervention using tDCS is more effective in improving lower limb muscle activation and balance ability than action observation training.

Effects of Whole Body Electromyostimulation on Muscle Activity and Muscle Thickness of Rectus Femoris, and Muscle Thickness of Abdominis Muscle in Healthy Adults

  • Lee, Keun-hyo;Park, Se-jin;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.26 no.4
    • /
    • pp.42-52
    • /
    • 2019
  • Background: Whole body-electromyostimulation (WB-EMS) is widely used for the rehabilitation and recovery of patients with various neuromusculoskeletal disorders. Objects: To objectively measure changes in lower extremity and abdominal muscles after sit-to-stand dynamic movement training using WB-EMS. Methods: A total of 46 healthy adults (23 experimental and 23 control subjects) performed sit-to-stand exercise; the experimental group with WB-EMS, and the control group without WB-EMS. The muscle activity of the lower extremity, and the muscle thickness of the lower extremity and abdominal muscles were measured before and after the intervention. Results: In terms of electromyographic activity, there was a significant interaction effect for the rectus femoris (RF) muscle (F=30.212, p=.000). With regards to ultrasonographic imaging, the muscle thickness of the RF muscle had a significant interaction effect at the muscle contraction ratio (F=8.071, p=.007). The deep abdominal muscles, such as the transverse abdominal (TrA) and internal oblique (IO) muscles, also showed significant interaction effects at the muscle contraction ratio (F=5.474, p=.024, F=24.151, p=.000, respectively). Conclusion: These findings suggest that WB-EMS may help to improve the muscular activity of the RF muscle, and the muscle thickness of the RF muscle and deep muscles such as the TrA and IO muscles.

Comparison of Quadriceps Femoris Muscle Activations during Wall Slide Squats (벽 미끄러짐 쪼그려 앉기 방법에 따른 넙다리네갈래근의 근활성도 비교)

  • Kim, Byeong-Jo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • PURPOSE: The purpose of this study was compare quadriceps femoris muscle activity while performing wall slide squats of four methods. METHODS: Forty subjects, with no history of patellofemoral pain, quadriceps injury, or other knee injury volunteered for this study. Muscle activation of the vastus medialis obliquus, rectus femoris, vastus lateralis muscles were recorded while subjects performed 10 consecutive wall slide squats. Subjects performed the wall slide squats during four different methods: (1) basic wall slide squat, (2) keep back upright against fitness ball, (3) standing of unstable surface, (4) squeezing ball between both knees. Statistical analysis were accomplished by utilizing the one-way ANOVA(Bonferroni's post-hoc test) by SPSS 20.0 program. Significance level was set at p<.05. RESULTS: Muscle activations induced wall slide squats of four methods compared and results showed that there was significant difference only in vastus medialis obliquus and rectus femoris but there was no significant difference in vastus lateralis. The vastus medialis obliquus was significantly different only keep back upright against fitness ball at post-hoc test. The rectus femoris was significantly different keep back upright against fitness ball and standing of unstable surface at post-hoc test. CONCLUSION: Based on these results, we conclude that quadriceps femoris muscle activations are differenced by performing wall slide squats of four different methods in healthy subjects. These data suggest that for quadriceps muscle strengthening, exercise professionals can perform the wall slide squats by altering several task variables. Further research is needed to determine the exact mechanism by which quadriceps function is altered.

Effect of Allopurinol on Ultrastructural Changes in Ischemia Reperfusion Injury to Skeletal Muscle of Rats After Graded Periods of Complete Ischemia (흰쥐에서 허혈시간에 따라 재관류후 나타나는 근조직의 미세구조 변화에 allopurinol이 미치는 영향)

  • Paik, Doo-Jin;Chun, Jae-Hong
    • Applied Microscopy
    • /
    • v.25 no.3
    • /
    • pp.51-62
    • /
    • 1995
  • It has been well known that ischemia and reperfusion injury to skeletal muscle following an acute arterial occlusion causes significant morbidity and mortality. The skeletal muscle, which contains high energy phosphate compounds, has ischemic tolerance. During the ischemia, the ATP is catalyzed to hypoxanthine anaerobically and hypoxanthine dehydrogenase is converted to xanthine oxidase. During reperfusion, the hypoxanthine is catalyzed to xanthine by xanthine oxidase under $O_2$, presence and that results in production of cytotoxic oxygen free radicals. These cytotoxic free radicals, $O_2^-,\;H_{2}O_2,\;OH^-$, are toxic and make lesions in skeletal muscle during reperfusion. The authors perform the present study to investigate the effects of allopurinol, the inhibitor of xanthine oxidase, on reperfused ischemic skeletal muscles by observing the ultrastructural changes of the muscle fibers. A total of 48 healthy Sprague-Dawley rats weighing from 200 g to 250 g were used as experimental animals. Under urethane(3.0mg/kg., IP) anesthesia, lower abdominal incision was done and the left common iliac artery were ligated by using vascular clamp for 1, 2 and 6 hours. The left rectus femoris muscles were obtained at 6 hours after the removal of vascular clamp. In the allopurinol pretreated group, 50mg/kg of allopurinol was administered once a day for 2 days and before 2 hours of ischemia. The specimens were sliced into $1mm^3$ and prepared by routine methods for electron microscopic observations. All preparations were stained with uranyl acetate and lead citrate, and then observed with Hitachi -600 transmission electron microscope. The results were as follows: 1. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats, decreased glycogen particles and electron density of mitochondrial matrix and dilated terminal cisternae are seen. In 2 hours ischemia/6 hours repersed rectus femoris muscles of rats, mitochondria with electron lucent matrix, irregularly dilated triad and spheromembranous bodies are observed. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats, irregularly arranged myofibrils, and many spheromembranous bodies, fat droplets and lysosome are seen. 2. In 1 hour ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, decreased glycogen particle and dilated cisternae of sarcoplasmic reticulum and triad are observed. In 2 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol decreased electron density of mitochondrial matrix and spheromembranous bodies are seen. In 6 hours ischemia/6 hours reperfused rectus femoris muscles of rats pretreated with allopurinol, mitochondria with electron lucent matrix, spheromembranous bodies and dilated cisternae of sarcoplasmic reticulum and terminal cistern are observed. The results suggest that the allopurinol attenuates the damages of the skeletal muscles of rats during ischemia and reperfusion.

  • PDF