• Title/Summary/Keyword: Rectifier-Inverter

Search Result 246, Processing Time 0.021 seconds

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

Novel Converter Topology for a Three Phase to Three Phase PWM Rectifier/Inverter System (비용절감형 컨버터 구조를 갖는 3상-3상 PWM 정류기/인버터 시스템)

  • Kim, Gi-Taek;Park, Tae-Yeol;Lee, Hae-Chun
    • Journal of Industrial Technology
    • /
    • v.18
    • /
    • pp.323-328
    • /
    • 1998
  • A current controlled VSI-PWM rectifier and inverter with capacitor dc link is regarded as one of the most promising structures for three-phase to three-phase to three-phase power conversion. This type of converter normally requires twelve switches for a rectifier and inverter composed of self turn-off switch such as a bi-polar transistor or IGBT with an anti-parallel diode. In this paper, a new three-phase to three-phase converter for ac motor drives is proposed. The proposed converter employs only eight switches and has the capability of delivering sinusoidal input currents with unity power factor and bidirectional power flow. This paper describes the feasibility and the operational limitations of the proposed structure. A mathematical model of the system is derived using generalized modulation theory and experimental results for steady state and dynamic behavior are presented to verify the developed model.

  • PDF

Regenerative Inverter System for DC Traction Substation with Voltage Drop Compensation Mode (전압강하 보상모드를 갖는 직류 지하철용 회생인버터 시스템)

  • Kim, Jun-Gu;Kim, Jae-Hyung;Cho, Kee-Hyun;Won, Chung-Yuen;Kim, Yong-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.213-220
    • /
    • 2008
  • In this paper, the regenerative inverter system with voltage drop compensation mode is proposed. When the main rectifier is broken, the DC traction can not be supplied the power from the utility. Actually, the reserve rectifier is mounted in the substation to prevent this accident. In this paper, the voltage drop compensation mode is added to the regenerative inverter system in order to substitute the reserve rectifier. The proposed regenerative inverter system returns the regenerative energy from the DC line voltage to the utility. In addition, the inverter can be compensate the harmonics caused by the power conversion devices used in the DC traction system. We demonstrated the effectiveness of the proposed control algorithm by using computer simulation.

Analysis and Control of Cost-Effective Topologies for Single Phase to Three Phase Power Converter (비용절감형 단상-삼상 전력변환기 구조의 해석 및 제어)

  • Lee, Hae-Chun;Park, Tae-Yeol;Kim, Gi-Taek
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.217-226
    • /
    • 1999
  • A single phase to three phase power converter with cost effective and simple structure is proposed. The converter consists of rectifier and inverter. The rectifier is composed of a half wave rectifier, a dc link capacitor, and a current limiting inductor, and the inverter is of only two switches with PWM control. For negative sequence operation the inverter output voltage leads the line input by $60^{\circ}$, and for positive sequence operation the inverter output voltage leads by $60^{\circ}$. We can see that positive sequence operation shows higher output voltage, slight harmonic distortion(2%), and better performances such as high efficiency and high power factor. A mathematical model for system analysis is provided, and specifications for selection and control scheme both for start-up and for steady state are analyzed. comparison and operational limits of positive and negative sequence operation are performed, and simulations and experiments are executed to verify the proposed.

  • PDF

The Power Analysis and Its Control of Two-phase Orthogonal Power Supply for the Continuous Casting

  • Ma, Fujun;Luo, An;Xiong, Qiaopo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.971-982
    • /
    • 2015
  • In order to improve the quality of the billet continuous casting, a two-phase orthogonal power supply (TPOPS) for electromagnetic stirrer is researched, which is composed of three-phase PWM rectifier and three-leg inverter. According to the power analysis of system, the ripple of dc-link voltage is analyzed and its analytical expression is derived. In order to improve the performance of electromagnetic stirring, an integrated control method with feedforward control is proposed for PWM rectifier to suppress the fluctuations of dc-link voltage and provide a stable dc source for inverter. According to the simplified equivalent model, a composite current control method is proposed for inverter. This proposed method can combine the merits of feedforward control with feedback control to effectively improve the dynamic output performance of TPOPS. Finally, a 300kVA prototype of TPOPS is developed, and the results have verified the analysis and control method.

Modeling of Multilevel PWM Inverter/Rectifier (멀티레벨 PWM 인버터/정류기의 모델링)

  • Choi, Nam-Sup;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1119-1122
    • /
    • 1992
  • This paper deals with a novel method of modeling and analyzing multilevel pulse width modulation(PWM) inverter/rectifier, which leads to extraction of equivalent circuit in fundamental frequency domain. By the technique, we can draw out the corresponding linear time invariant circuit even thuogh the actual circuit is switched. A static VAR compensator using five-level inverter is modeled and simulated for the verification of the modeling.

  • PDF

STATIC AND DYNAMIC BEHAVIOR OF HIGH-CURRENT RECTIFIER DIODES IN RESISTANCE WELDING INVERTER POWER SOURCES

  • Mecke, Hubert;Doebbelin, Reinhard;Fischer, Wolfgang
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.1003-1007
    • /
    • 1998
  • In recent years inverter power sources are more and more used for resistance welding processes. In this paper some results of investigation into the static and dynamic behavior of high-current rectifier diodes used in these inverter power sources will be discussed. By means of digital simulation, losses and efficiency have been determined depending on the power semiconductor parameters.

  • PDF

Modeling and Analysis of Cascade Multilevel PWM Rectifier Using Circuit DQ Transformation

  • Park, Nam-Sup
    • Journal of information and communication convergence engineering
    • /
    • v.1 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • This paper presents a cascade multilevel PWM rectifier without the isolation transformers for energy build-up at each inverter modules. The features and advantages of the proposed PWM rectifier can be summarized as follows; I) It realizes the high power high voltage AC/DC power conversion, 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained. Finally, it will be shown that the system simulation reveals the validity of analyses.

A Study on the Design of Electrolysis Power Using Inverter (인버터를 이용한 전기분해전원 설계에 과한 연구)

  • 이정민;목형수;최규하;최동규
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.55-59
    • /
    • 1998
  • By this time, Diode Rectifier or SCR has been used to gain DC Voltage for Electrolysis Power. Generally DC Voltage is produced from rectifier shall be transformed before rectifier using step-down transformer to obtain adaptable DC Voltage, rectifier output. In the same way, rectifier using SCR shall obtain output voltage after step-down voltage through transformer and control of the SCR firing angle. Transformer shall be used for this two methods to adjust the voltage. But the size and weight of the transformer are increased in accordance with the increase of capacity, and the hardships are accompanied in workspace or transportation. Besides, only the value of input voltage is possible to be regulated, and the expectation of current control is almost impossible during Electrolysis. This study has conducted Design and Simulation to reduce the size and weight of transformer and to be enable voltage and current control of Electrolysis power through high-speed switching using Inverter, Electronics device.

  • PDF

A Study on Single-Stage High Frequency Resonant Inverter (단일전력단으로 구성된 고주파 공진 인버터에 관한 연구)

  • Won J. S.;Kang J. W.;Kim D. H.;Jung S. G.;Lee Y. S.;Lee B. S.
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.750-753
    • /
    • 2002
  • A novel single-stage half-bridge high frequency resonant inverter using ZVS(Zero Voltage Switching) with high input power factor suitable for induction heating applications is presented in this paper. The proposed high frequency resonant Inverter integrates half-bridge boost rectifier as power factor corrector(PFC) and half-bridge resonant inverter into a single stage. The input stage of the half-bridge boost rectifier is working in discontinuous conduction mode (DCM) with constant duty cycle and variable switching frequency. Simulation results through the Pspice have demonstrated the feasibility of the proposed inverter. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF