• 제목/요약/키워드: Rectifier diodes

검색결과 112건 처리시간 0.038초

High Step-up Active-Clamp Converter with an Input Current Doubler and a Symmetrical Switched-Capacitor Circuit

  • He, Liangzong;Zeng, Tao;Li, Tong;Liao, Yuxian;Zhou, Wei
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.587-601
    • /
    • 2015
  • A high step-up dc-dc converter is proposed for photovoltaic power systems in this paper. The proposed converter consists of an input current doubler, a symmetrical switched-capacitor doubler and an active-clamp circuit. The input current doubler minimizes the input current ripple. The symmetrical switched-capacitor doubler is composed of two symmetrical quasi-resonant switched-capacitor circuits, which share the leakage inductance of the transformer as a resonant inductor. The rectifier diodes (switched-capacitor circuit) are turned off at the zero current switching (ZCS) condition, so that the reverse-recovery problem of the diodes is removed. In addition, the symmetrical structure results in an output voltage ripple reduction because the voltage ripples of the charge/pump capacitors cancel each other out. Meanwhile, the voltage stress of the rectifier diodes is clamped at half of the output voltage. In addition, the active-clamp circuit clamps the voltage surges of the switches and recycles the energy of the transformer leakage inductance. Furthermore, pulse-width modulation plus phase angle shift (PPAS) is employed to control the output voltage. The operation principle of the converter is analyzed and experimental results obtained from a 400W prototype are presented to validate the performance of the proposed converter.

New Three-Level PWM DC/DC Converter - Analysis, Design and Experiments

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Power Electronics
    • /
    • 제14권1호
    • /
    • pp.30-39
    • /
    • 2014
  • This paper studies a new three-level pulse-width modulation (PWM) resonant converter for high input voltage and high load current applications. In order to use high frequency power MOSFETs for high input voltage applications, a three-level DC converter with two clamped diodes and a flying capacitor is adopted in the proposed circuit. For high load current applications, the secondary sides of the proposed converter are connected in parallel to reduce the size of the magnetic core and copper windings and to decrease the current rating of the rectifier diodes. In order to share the load current and reduce the switch counts, three resonant converters with the same active switches are adopted in the proposed circuit. Two transformers with a series connection in the primary side and a parallel connection in the secondary side are adopted in each converter to balance the secondary side currents. To overcome the drawback of a wide range of switching frequencies in conventional series resonant converters, the duty cycle control is adopted in the proposed circuit to achieve zero current switching (ZCS) turn-off for the rectifier diodes and zero voltage switching (ZVS) turn-on for the active switches. Finally, experimental results are provided to verify the effectiveness of the proposed converter.

Bridgeless Flyback PFC Rectifier Using Single Magnetic Core and Dual Output Windings

  • Shin, Jong-Won;Baek, Jong-Bok;Cho, Bo-Hyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2011년도 전력전자학술대회
    • /
    • pp.145-146
    • /
    • 2011
  • In this paper, a bridgeless flyback power factor correction (PFC) rectifier which uses single magnetic core is proposed. The proposed PFC rectifiers utilize bidirectional switch to handle both positive and negative input voltage without bridge diodes. A transformer with dual output windings enables the rectifier dispense with any additional magnetic component. The operation of the proposed flyback PFC rectifier is analyzed, and its higher efficiency than its conventional counterpart is verified by experiment.

  • PDF

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

1차측 클램핑 다이오드를 이용한 ZVS Three-Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter using Primary Clamping Diodes)

  • 김용
    • 조명전기설비학회논문지
    • /
    • 제27권12호
    • /
    • pp.101-108
    • /
    • 2013
  • This paper presents A Zero-Voltage-Switching(ZVS) Three-Level DC/DC Converter using Primary Clamping Diodes. The Previous ZVS Three-Level DC/DC converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level DC/DC converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage.

1차측 환류 다이오드를 제거한 ZVS Three-Level DC/DC 컨버터에 관한 연구 (A Study on the Zero-Voltage-Switching Three-Level DC/DC Converter without Primary Freewheeling Diodes)

  • 전용진;김용;배진용;이은영;최근수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.183-187
    • /
    • 2005
  • A Zero-Voltage-Switching(ZVS) Three-Level Converter realizes ZVS for the switches with the use of the leakage inductance(or external resonant inductance) and the output capacitors of the switches, however; the rectifier diodes suffer from recovery which results in oscillation and voltage spike. In order to solve this problem, this paper proposes a novel ZVS Three-Level converter, which introduces two clamping diodes to the basic Three-Level converter to eliminate the oscillation and clamp the rectified voltage to the reflected input voltage, the proposed ZVS Three-Level converter can be simplified by removing the two freewheeling diodes.

  • PDF

동기 정류기를 이용한 클램프 모드 포워드 영전압 스위칭 다중 공진형 컨버터 (CM Forward ZVS-MRC with Synchronous Rectifier)

  • 안강순;김희준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.395-399
    • /
    • 1996
  • The Clamp Mode(CM) Forward Zero Voltage Switching Multi Resonant Converter(ZVS-MRC) with self-driven synchronous rectifier in studied. The loss at the synchronous rectification stage of the converter is analyzed using MOSFET linear model and is compared with the loss at the conventional schottky diode rectification stage of the converter. From the results of the analysis, it is known that the use of MOSFETs as a synchronous rectifier reduces the loss at the rectification stage over the whole load range comparing the use of schottky diodes as a conventional rectifier in the converter. In order to verify the validity of the analysis, we have built a 33W(3.3V/10A) CM Forward ZVS-MRC with self-driven synchronous rectifier, in which switching frequency is 1MHz, and tested. From the experimental results, it is known that the synchronous rectification achieved about 1W improvement in the loss at the rectification stage and about 3% in the efficiency at the converter as compared with the conventional schottky diode rectification.

  • PDF

전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법 (Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier)

  • 박홍선;김정은;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

에어컨 전원장치의 고조파 저감 (Air-Conditioner Power Source device to meet the Harmonic guide lines)

  • 문상필;서기영;이현우;김영문
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 추계학술대회 논문집
    • /
    • pp.171-174
    • /
    • 2001
  • This paper proposes a nonlinear impedance circuit composed by diodes and inductors or capacitors. This circuit needs no control circuits and switches, and the impedance .value is changed by the polarity of current or voltage. and this paper presents one of these applications to improve the input current of capacitor input diode rectifiers. The rectifier using the nonlinear impedance circuit id constructed with four diodes and four capacitors in addition to the conventional rectifiers, that is, it has eight diodes and five capacitors, including a DC link capacitor. It makes harmonic components of the input current reduce and the power factor improve. A circuit design method is shown by experimentation and confirmed simulation. It explained that compared conventional pulse width modulated (PWM) inverter with half pulse-width modulated (HPWM) inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

  • PDF