• Title/Summary/Keyword: Rectifier Circuit

Search Result 442, Processing Time 0.024 seconds

Improved Single-Stage AC-DC LED-Drive Flyback Converter using the Transformer-Coupled Lossless Snubber

  • Jeong, Gang-Youl;Kwon, Su-Han
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.644-652
    • /
    • 2016
  • This paper presents an improved single-stage ac-dc LED-drive flyback converter using the transformer-coupled lossless (TCL) snubber. The proposed converter is derived from the integration of a full-bridge diode rectifier and a conventional flyback converter with a simple TCL snubber. The TCL snubber circuit is composed of only two diodes, a capacitor, and a transformer-coupled auxiliary winding. The TCL snubber limits the surge voltage of the switch and regenerates the energy stored in the leakage inductance of the transformer. Also, the switch of the proposed converter is turned on at a minimum voltage using a formed resonant circuit. Thus, the proposed converter achieves high efficiency. The proposed converter utilizes only one general power factor correction (PFC) control IC as its controller and performs both PFC and output power regulation, simultaneously. Therefore, the proposed converter provides a simple structure and an economic implementation and achieves a high power factor without the need for any separate PFC circuit. In this paper, the operational principle of the proposed converter is explained in detail and the design guideline of the proposed converter is briefly shown. Experimental results for a 40-W prototype are shown to validate the performance of the proposed converter.

High-Power Electronic Ballast Design for Metal-Halide Lamp without Acoustic Resonance (음향 공명 현상을 제거한 MHL용 고출력 전자식 안정기 설계)

  • Park, Chong-Yun;Kim, Ki-Nam;Lee, Bong-Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1187-1194
    • /
    • 2008
  • This paper presents a high-power electronic ballast for a metal-hallide lamp(MHL) that employs frequency modulation(FM) technique to eliminate acoustic resonance(AR). The proposed ballast consists of a full-bridge rectifier, a power factor correction(PFC) circuit, a full-bridge(FB) inverter, an ignitor using LC resonance and an FM control circuit. Whereas a manual PFC provides advantages in terms of high reliability and low cost for constructing the circuit, it is difficult to supply a stable voltage because of the output voltage ripple that occurs with a period of 120Hz. Although the ballast can be designed with a small size and a light weight if it is driven at a switching frequency between 1 and 100 kHz, AR will occur if the eigen-value frequency of the lamp coincides with the inverter's operation frequency. The operation frequency was modulated in real time according to the output voltage ripple to compensate for the variation in power supplied to the lamp and eliminate AR. Performance of the proposed technique was validated through numerical analysis, computer simulation using PSPICE and by applying it to an electronic ballast for a prototype 1kW MHL.

A Study on the Development of an Electronic Ballast for 70W Ceramic Discharge Metal Halide Lamps (70W 세라믹 방전관 메탈할라이드 램프용 전자식 안정기 개발에 관한 연구)

  • 김일권;길경석;이성근;김진모
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.301-304
    • /
    • 2002
  • This paper describes a design and fabrication of an electronic ballast for 70[W]ceramic discharge metal halide lamps. The proposed ballast is composed of a rectifier, an active PFC, a half-bridge inverter, a LC resonant circuit and a controller. The design also includes a specially designed time circuit which provides reignition of the lamp. Running frequency of the ballast is set at 45[KHz]to avoid acoustic-resonance and flicker. from the test results, input power factor and efficiency of the ballast were estimated 91[%] and 97.7[%], respectively.

  • PDF

Development of an Electronic Ballast for 70W Ceramic Discharge Metal Halide Lamps with Step Down Converter (강압형 컨버터를 이용한 70W CDM 램프용 전자식 안정기의 개발)

  • 김일권;길경석;김진모
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.435-439
    • /
    • 2002
  • This paper describes a design and fabrication of an electronic ballast for 70[W] ceramic discharge metal halide lamps. The proposed ballast is composed of a rectifier, an active power factor correction circuit (PFC), a half-bridge inverter, a LC resonant circuit and a microprocessor. The developed ballast also includes a specially designed time circuit which provides reignition of lamps. Running frequency of the ballast is set at 40[kHz] to avoid acoustic-resonance and flickering. From the experimental results, input power factor and efficiency of the ballast are estimated 99.8[%] and 93.1[%)] respectively.

  • PDF

A Study on Simple Single phase Air-conditioner of Power factor Correction Circuit (심플한 단상 에어컨의 역률개선회로에 관한 연구)

  • 문상필;서기영;이현우;김영문;김영철
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • This paper describes the simple single phase air-conditioner of power factor correction (PFC) circuit. By adopting PFC in the rectifier, we can reduce harmonic into power line, improve the efficiency and lower the total system cost compared to conventional inviter only. Also, system performance is improved by stabilizing the output voltage of PFC. To improve the current waveform of diode rectifiers, we propose a new operating principle for the voltage diode rectifiers. A circuit design method is shown by experimentation and confirmed simulation. It explained that compared conventional pulse-width modulated (PWM) inverter with half pulse-width modulated (HPWM) inverter HPWM inverter. Proposed HPWM inverter eliminated dead-time by lowering switching loss and holding over-shooting.

  • PDF

Development of a Low Frequency Operating Electronic Ballast for Fish Attracting Lamps (저주파 구동형 집어등용 전자식 안정기 개발)

  • Kim, Il-Kwon;Song, Jae-Yong;Park, Dae-Won;Seo, Hwang-Dong;Kil, Gyung-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.273-276
    • /
    • 2005
  • This paper presents an electronic ballast using a step down converter, a low frequency inverter for high pressure discharge lamp. The proposed ballast is composed of a full-wave rectifier, a step down converter operated as a current source with power regulation and a low frequency inverter with ignition circuit. The ignition circuit generates high voltage pulse of 1${\sim}$2[kV] peak, 130[Hz]. Moreover, it is able to reignite at regular intervals by protective circuit. As experimental results on the test, lamp voltage, current and consumption power are measured 132.5[V], 7.6[A] and 1,005[W], respectively. It was confirmed that the designed ballast operate the lamp with a constant power.

  • PDF

Design of a Full-Wave Rectifier with Vibration Detector for Energy Harvesting Applications (에너지 하베스팅 응용을 위한 진동 감지기가 있는 전파정류 회로 설계)

  • Ka, Hak-Jin;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.421-424
    • /
    • 2017
  • This paper describes a full-wave rectifiers for energy harvesting circuit using vibration detector. The designed circuit operates only when the vibration is detected through the vibration detector and the active diode. When there is no vibration, the comparator is turned off to prevent leakage of energy stored in the $C_{STO}$. The energy stored in the capacitor is used to drive the level converter and the active diode. The energy stored in the capacitor is supplied to an active diode designed as an output power. The vibration detector is implemented with Schmitt Trigger and Peak Detector with Hysteresis function. The proposed circuit is designed in a CMOS 0.35um technology and its functionality has been verified through extensive simulations. The designed chip occupies $590{\mu}m{\times}583{\mu}m$.

  • PDF

A Study A on Internal Loss Characteristics and Efficiency Improvement of Low Power Flyback Converter Using WBG Switch (WBG 스위치를 적용한 소용량 플라이백 컨버터의 내부손실 특성과 효율 개선에 관한 연구)

  • Ahn, Tae Young;Yoo, Jeong Sang
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.99-104
    • /
    • 2020
  • In this paper, efficiency and loss characteristics of GaN FET were reported by applying it into the QR flyback converter. In particular, for the comparison of efficiency characteristics, QR flyback converter experimental circuits with Si FET and with GaN FET were separately produced in 12W class. As a result of the experiment, the experimental circuit of the QR flyback converter using GaN FET reached a high efficiency of 90% or more when the load power was 2W or more, and the maximum efficiency was observed to be about 92%, and the maximum loss power was about 1.1W. Meanwhile, the efficiency of the experimental circuit with Si FET increased as the input voltage increased, and the maximum efficiency was observed to be about 82% when the load power was 9W or higher, and the maximum loss power was about 2.8W. From the results, it is estimated that that in the case of the experimental circuit applying the GaN FET switch, the power conversion efficiency was improved as the switching loss and conduction loss due to on-resistance were reduced, and the internal loss due to the synchronous rectifier was minimized. Consequently, it is concluded that the GaN FET is suitable for under 20W class power supply unit as a high efficiency power switch.

The novel SCR-based ESD Protection Circuit with High Holding Voltage Applied for Power Clamp (파워 클램프용 높은 홀딩전압을 갖는 사이리스터 기반 새로운 구조의 ESD 보호회로)

  • Lee, Byung-Seok;Kim, Jong-Min;Byeon, Joong-Hyeok;Park, Won-Suk;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.208-213
    • /
    • 2013
  • In this paper, we proposed the novel SCR-based ESD protection circuit with high holding voltage for power clamp. In order to increase the holding voltage, the floating p+ and n+ to n-well and p-well, respectively, in the conventional SCR. The resulting increase of the holding voltage of the our proposed ESD circuit enables the high latch-up immunity. The electrical characteristics including ESD robustness of the proposed ESD circuit have been simulated using Synopsys TCAD simulator. According to the simulation result, the proposed device has higher holding voltage of 4.98 V than that of the conventional SCR protection circuit. Moreover, it is confirmed that the device could have the holding voltage of maximum 13.26 V with the size variation of floated diffusion area.

A Design of Wide-Bandwidth LDO Regulator with High Robustness ESD Protection Circuit

  • Cho, Han-Hee;Koo, Yong-Seo
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1673-1681
    • /
    • 2015
  • A low dropout (LDO) regulator with a wide-bandwidth is proposed in this paper. The regulator features a Human Body Model (HBM) 8kV-class high robustness ElectroStatic Discharge (ESD) protection circuit, and two error amplifiers (one with low gain and wide bandwidth, and the other with high gain and narrow bandwidth). The dual error amplifiers are located within the feedback loop of the LDO regulator, and they selectively amplify the signal according to its ripples. The proposed LDO regulator is more efficient in its regulation process because of its selective amplification according to frequency and bandwidth. Furthermore, the proposed regulator has the same gain as a conventional LDO at 62 dB with a 130 kHz-wide bandwidth, which is approximately 3.5 times that of a conventional LDO. The proposed device presents a fast response with improved load and line regulation characteristics. In addition, to prevent an increase in the area of the circuit, a body-driven fabrication technique was used for the error amplifier and the pass transistor. The proposed LDO regulator has an input voltage range of 2.5 V to 4.5 V, and it provides a load current of 100 mA in an output voltage range of 1.2 V to 4.1 V. In addition, to prevent damage in the Integrated Circuit (IC) as a result of static electricity, the reliability of IC was improved by embedding a self-produced 8 kV-class (Chip level) ESD protection circuit of a P-substrate-Triggered Silicon Controlled Rectifier (PTSCR) type with high robustness characteristics.