• Title/Summary/Keyword: Rectifier Circuit

Search Result 442, Processing Time 0.032 seconds

A Study on Accuracy Detection Method for Signal Peak Voltage (신호용 PEAK 전압 정밀검출에 관한 연구)

  • Park, Ho-Chul;Sung, Hyung-Su;Han, Seung-Moon;Han, Jeong-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2528-2530
    • /
    • 2000
  • In general, Diode makes a major role in electronic circuit. For example, switching of rectifier, cross current of switching rectifier, energy transfer of electronic element and reverse charge of capacitor, voltage insulation, energy feedback from load to power supply, and such as recovery of storaged energy. Generally, We regard power diode as ideal element, but it has a certain boundary actually, specially, We use diode for detecting circuit peak hold voltage signal. It has cut in voltage. It occurs error of measurement value namely. This error, below in region diode voltage drop (0.7v) measurement value is wholesome signal, Specially, We can not get precision data. Therefore, precision level is low between theoretical and measurement data because of error in actual circuit. Conclusionally, In this paper, We define the error concerning to the power diode characteristics which is used detecting of the minute signal, and recommend the method that minimize measurement error.

  • PDF

A Study of Power Conversion System for Energy Harvester Using a Piezoelectric Materials (압전소자를 이용한 에너지 하베스터용 전력변환장치 연구)

  • An, Hyunsung;Kim, Young-Cheol;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.7
    • /
    • pp.1059-1065
    • /
    • 2017
  • In this paper, the energy harvester with a piezoelectric materials is modeled as the electric equivalent circuit, and performances of a standard DC method and a Parallel-SSHI method are verified through experiment under variable force and load conditions. Piezoelectric generator consists of mass, damper and spring constant, and it is modeled by electrical equivalent circuit with RLC components. Standard DC and Parallel-SSHI are used as power conversion methods, and standard DC consists of full-bridge rectifier and smoothing capacitor. Parallel-SSHI method is composed of L-C resonant circuit, zero-crossing detector and full-bridge rectifier. In case of simulation under $100k{\Omega}$ load condition, the harvested power is $500{\mu}W$ in Standard DC and $670{\mu}W$ in Parallel-SSHI, respectively. In experiment, the harvested power under $100k{\Omega}$ load condition is $420{\mu}W$ in standard DC and $602{\mu}W$ in Parallel-SSHI. Harvested power of Parallel-SSHI is improved by approximately 40% more than that of standard DC method.

Passive Lossless Snubbers Using the Coupled Inductor Method for the Soft Switching Capability of Boost PFC Rectifiers

  • Kim, Ho-Sung;Baek, Ju-Won;Ryu, Myung-Hyo;Kim, Jong-Hyun;Jung, Jee-Hoon
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.366-377
    • /
    • 2015
  • In order to minimize switching losses for high power applications, a boost PFC rectifier with a novel passive lossless snubber circuit is proposed. The proposed lossless snubber is composed of coupled inductors merged into a boost inductor. This method compared with conventional methods does not need additional inductor cores and it reduces extra costs to implement a soft switching circuit. Especially, the proposed circuit can reduce the reverse recovery current of output diode rectifiers due to the coupling effect of the inductor. During turn-on and turn-off operating modes, the proposed PFC converter operates under soft switching conditions with high power conversion efficiency. In addition, the performance improvement and analysis of the operating effects of the coupled inductors were also presented and verified with a 3.3 kW prototype rectifier.

A New High-Efficiency CMOS Darlington-Pair Type Bridge Rectifier for Driving RFID Tag Chips (RFID 태그 칩 구동을 위한 새로운 고효율 CMOS 달링턴쌍형 브리지 정류기)

  • Park, Kwang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.4
    • /
    • pp.1789-1796
    • /
    • 2012
  • In this paper, a new high-efficiency CMOS bridge rectifier for driving RFID tag chips is designed and analyzed. The input stage of the proposed rectifier is designed as a cascade structure connected with two NMOSs for reducing the gate capacitance by circuitry method, which is the main path of the leakage current that is increased when the operating frequency is increased. This gate capacitance reduction technique using the cascade input stage for reducing the gate leakage current is presented theoretically. The output characteristics of the proposed rectifier are derived analytically using its high frequency small-signal equivalent circuit. For the general load resistance of $50K{\Omega}$, the proposed rectifier shows better power conversion efficiencies of 28.9% for 915MHz UHF (for ISO 18000 -6) and 15.3% for 2.45GHz microwave (for ISO 18000-4) than those of 26.3% and 26.8% for 915MHz, and 13.2% and 12.6% for 2.45GHz of compared other two existing rectifiers. Therefore, the proposed rectifier may be used as a general purpose rectifier to drive tag chips for various RFID systems.

Parallel operation of rectifier with unit-power factor (단위역률 정류기의 병렬운전)

  • Lee, Seung-Heui;Kim, Tae-Won;Park, Jae-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1212-1213
    • /
    • 2011
  • PWM(pulse width modulation) rectifier has unit power factor and low harmonic distortion with high power conversion efficiency in entire loading range. These merits of PWM rectifier help the spread of DC distribution system. In addition, if multiple PWM rectifiers can be operated in parallel connection, maintenance process can be simple and reliability of power source can be advanced because of the hot swapping is available. The other way, the load unbalance among rectifiers can force a converter to stop by over current. The surge current by closed circuit composition between rectifiers can force switching devices damage. In this paper, some problems that can occur in case of parallel operation of PWM rectifiers and problem eliminating methods are considered.

  • PDF

Implementation of Digital Control for Critical Conduction Mode Power Factor Correction Rectifier

  • Shin, Jong-Won;Baek, Jong-Bok;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.147-148
    • /
    • 2011
  • In this paper, implementation of digital control for critical conduction mode power factor correction (PFC) rectifier is presented. Critical conduction mode is widely used in medium and low power conversion application due to its minimized MOSFET turn-on loss and diode reverse-recovery problem. However, it needs additional zero current detection circuit and maximum frequency limit to properly turn the MOSFET on and avoid the excessive switching loss in light load operation. This paper explains the digital IC implementation and verifies its operation with 200-W prototype PFC rectifier.

  • PDF

A New Harmonics Reducing Type High Factor Single-Phase Rectifier Circuit (새로운 고조파 저감형 고역율 단상정류 회로)

  • Kim, Chil-Yong;Mun, Sang-Pil;Cho, Man-Chul;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.468-472
    • /
    • 2007
  • For small capacity rectifier circuits such as these for consumer electronics and appliances, capacitor input type rectifier circuits are generally used. Consequently, various harmonics generated within the power system become a serious problem. Various studies of this effect have been presented previously. The absence of switching devices makes systems more tolerant to over-load, and brings low radio noise benefits. We propose a power factor correction scheme using a LC resonant in commercial frequency without switching devices. In this method, It makes a sinusoidal wave by widening conduction period using the current resonance in commercial frequency, Hence, the harmonic characteristics can be significantly improved, where the lower order harmonics, such as the fifth and seventh orders are much reduced. The result are confirmed by the theoretical and expermental implementations

  • PDF

Analysis of Steady State Characteristics of Hybrid Cascade Multilevel PWM Rectifier (하이브리드 Cascade 멀티레벨 PWM 정류기의 정상상태 특성 해석)

  • 최남섭
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.573-576
    • /
    • 2000
  • In this paper, analysis of operating characteristics of hybrid cascade multilevel PWM rectifier without bulky and heavy isolation transformers is presented. The multilevel PWM rectifier is analyzed by using the circuit DQ transformation whereby the static and dynamic characteristics and some useful design relationships are obtained. Then, the operating characteristics such as active/reactive power relationships with respect to control variables, DC voltages build up are presented. It will be shown that the DC voltages for the multilevel output generation may be directly built up from AC utility source. Finally, to confirm the validity of the analysis, MATLAB simulations are tarried out.

  • PDF

A NEW CONTROL METHOD FOR CURRENT SHARING IN THE 12-PULSE PHASE-CONTROLLED RECTIFIER

  • Min, Byoung-Gwon;Baek, Byung-San;Won, Chung-Yuen
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.581-585
    • /
    • 1998
  • This paper presents the new current sharing control method of a 12-pulse phase-controlled rectifier(PCR) for a UPS. The control circuit of the 12-Pulse PCR with a parallel operating rectifier system is proposed to balance input currents and to reduce the harmonics of input current. The PCR is used widely in the industrial world, since its cost is much lower than that of the PWM converter and the composition of control circuits is simple. This system is developed and tested for a 3-phase 400KVA UPS system and the experimental results in this application are included.

  • PDF

Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier (전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법)

  • Park Hong-Sun;Kim Chong-Eun;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF