• 제목/요약/키워드: Rectangular water tanks

검색결과 25건 처리시간 0.026초

Finite element based total response analysis of rectangular liquid containers against different excitations

  • Kalyan Kumar Mandal
    • Ocean Systems Engineering
    • /
    • 제13권1호
    • /
    • pp.57-77
    • /
    • 2023
  • In the present study, the total hydrodynamic pressure exerted by the fluid on walls of rectangular tanks due to horizontal excitations of different frequencies, is investigated by pressure based finite element method. Fluid within the tanks is invisid, compressible and its motion is considered to be irrotational and it is simulated by two dimensional eight-node isoparametric. The walls of the tanks are assumed to be rigid. The total hydrodynamic pressure increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency. However, the hydrodynamic pressure has decreasing trend for the frequency greater than the fundamental frequency. Hydrodynamic pressure at the free surface is independent to the height of fluid. However, the pressure at base and mid height of vertical wall depends on height of fluid. At these two locations, the hydrodynamic pressure decreases with the increase of fluid depth. The depth of undisturbed fluid near the base increases with the increase of depth of fluid when it is excited with fundamental frequency of fluid. The sloshing of fluid with in the tank increases with the increase of exciting frequency and has maximum value when the exciting frequency is equal to the fundamental frequency of liquid. However, this vertical displacement is quite less when the exciting frequency is greater than the fundamental frequency.

5,000톤급 스테인리스 사각형 물탱크 구조의 설계 개선을 위한 구조해석 (Structural Analysis for Design Improvement of Stainless 5,000ton Rectangular Water Tank Structures)

  • 손병직;이상열
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.44-50
    • /
    • 2015
  • The finite element analysis of large sized rectangular water tank structures made of stainless steel materials is carried out for various combined load cases. The combined load cases for a large size of 5,000ton are further determined using the specification(KS B 6283) established from the Korean Standards Association. For the better numerical efficiency, the rectangular panels are modelled using the ANSYS program. The numerical results obtained for different load cases show as follows. In order to resist the snow load, it takes the influence of the gap than the size of the column. Also, in order to resist the water pressure, it shall increase the thickness of the wall. But, increasing the thickness of the wall is considerably less economical. Therefore, the angle with big thickness should be placed right next to the wall.

동일 형상의 서로 다른 크기를 가지는 2차원 4각 탱크의 슬로싱 충격 압력에 관한 실험적 연구 (An Experimental Study on Sloshing Impact Pressures with Two Identically Shaped Rectangular 2-Dimensional Model Tanks with Different Sizes)

  • 황윤식;정준형;김대웅;류민철
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.16-28
    • /
    • 2008
  • Recent growth in LNG market has led dramatic increase in new buildings of LNG carriers and several large LNG carriers are now being constructed by shipbuilders in Korea. Large size LNG carriers has brought keen concerns on the issue regarding safety of cargo containment systems and sloshing impact load which is the critical source of loads on the membrane type containment systems. Up to the present, the best way to properly assess sloshing impact pressures on surrounding walls is a model testing for wide-ranged excitation conditions. These impact pressures obtained from model tests sometimes need to be interpreted to full-scale values and in the near future this necessity will be strengthened for more rigorous and direct safety assessment of LNG cargo containment system. In this paper, a basic experimental study is carried out with two different sized, 2D identically shaped model tanks excited in simple translational motions. Relationships between pressures of different sized model tanks are investigated Model tanks are filled with fresh water and equipped with same sized pressure sensors.

  • PDF

병진운동하는 사각형 유체저장탱크 내부의 슬로싱 특성 연구 (A Study on the Sloshing of the Rectangular Tank Partially Filled with Fluid Under Translational Motion)

  • 이영신;김현수;이재형;고성호
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.591-597
    • /
    • 2003
  • The oscillation of the fluid caused by external motions is called sloshing, which occurs in moving vehicles with contained fluid masses, such as the oil tankers, railroad cars, aircraft and rockets. Natural frequencies of fluid are much lower than that of solid structures, and the deformation caused by the excitation that is less than 1st natural frequency of fluid is very large. For the reason of that, sloshing characteristics under the ekcitation that is less than the 1st natural frequency must be studied prior to the consideration of natural frequencies of fluid. The experimental devices are constructed to simulate the translation motion. The rectangular tanks are made to study the sloshing characteristics under external excitation. The changes of water height are measured using an analogue camcorder and MPEG board, and those are compared to each other through a standard deviation. From the results of experiments, the sloshing is greatly influenced by the length of the rectangular tank than the width of that under the periodic translational motion in the length direction. The rapid amplification of sloshing by resonance is also confirmed experimentally.

유체 슬로싱모드가 탱크의 진동에 미치는 영향에 대한 연구 (A Study on Vibration Characteristics with Sloshing Mode Effect in Water Tank Structure)

  • 배성용
    • 대한조선학회논문집
    • /
    • 제40권6호
    • /
    • pp.88-95
    • /
    • 2003
  • Liquid storage rectangular tank structures are used in many fields of airplane and marine engineering. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance. Therefore it is essentially important to estimate vibration characteristics of tank structures. Many Investigators studied the vibration of cylindrical and rectangular tank structures containing still fluid. In general, the eigenbehavior of interior liquid is characterized by the sloshing mode while that of the structure by the bulging mode. However, the structure deformation to the sloshing mode and the liquid free-surface fluctuation to the bulging mode have been neglected in the classical added-mass computation. in the present paper, we study the vibration characteristics with sloshing mode effect.

사각 탱크 내 슬로싱 해석을 위한 입자법 시뮬레이션 (Particle-based Simulation for Sloshing in a Rectangular Tank)

  • 황성철;이병혁;박종천;성홍근
    • 한국해양공학회지
    • /
    • 제24권5호
    • /
    • pp.31-38
    • /
    • 2010
  • The Floating storage and re-gasification unit (FSRU), which has large cargo storage tanks, is a floating liquefied natural gas (LNG) import terminal. The sloshing motion in tanks that are partially filled with LNG can cause impact pressure on the containment system and affect the global motion of the FSRU. Therefore, the accurate prediction of sloshing motion has been a significant issue in the offshore gas production industry. In this paper, a particle method based on the moving particle semi-implicit (MPS) method proposed by Koshizuka and Oka (1996) has been modified to predict sloshing motion accurately in a rectangular tank with the filling ratio of water. The simulation results, including the violent sloshing of the fluid, were validated by comparison with the original MPS method.

접수 탱크 구조물의 진동특성에 관한 연구 - 종횡비 변화와 압력분포 - (A Study on Vibration Characteristics in Water Tank Structures -Change of Aspect Ratio and Pressure Distribution-)

  • 배성용
    • 대한조선학회논문집
    • /
    • 제40권6호
    • /
    • pp.80-87
    • /
    • 2003
  • Tank structures in ships are in contact with various fluid. The vibration characteristics of those structures are strongly affected by the added mass due to containing fluid. It is important to predict vibration characteristics of tank structures, but it is difficult to do. That's because the interaction problem concerned with the free surface, the variation of water depth and stiffener is to be considered between the fluid and the structure. Many authors have studied vibration of rectangular tank structures containing water. Kito studied added mass effect of water in contact with thin elastic flat plates. Kim et al. studied flexural vibration of stiffened plates in contact with water. However, few researches on dynamic interaction tank walls with water are reported in the vibration of rectangular tanks recently. in the present report, the coupling effect of added mass of fluid and structural constraint between panels on each vibration mode changing breadth of elastic plate, and dynamic pressure distribution have investigated numerically and discussed.

사각헝 탱크 구조의 접수 진동 특성에 관한 연구 (Analytical and Experimental Study on Vibration Characteristics for Rectangular Tank Structure Filled with Fluid)

  • 최수현;김극수;손성완
    • 한국소음진동공학회논문집
    • /
    • 제12권3호
    • /
    • pp.195-203
    • /
    • 2002
  • In the engine room and the aft part areas of the ship, there exist so many tank structures contacting with fresh water or sea water or oil. If these structures exhibit excessive vibrations during the sea trials, it takes a lot of cost, time and effort to improve vibration situation because the reinforcement work requires emptying the fluid out of the tanks, additional welding and special painting. It is therefore very important to predict a precise vibration characteristics of the tank structures at the design stage, however it is not easy to estimate vibration characteristics of the structures because of difficulties for accurate evaluation of the added (or virtual) mass effect due to the fluid inside the tank. In this paper, numerical and experimental approaches have been performed to present same fundamental data necessary for anti-vibration design of tank structures contacting with fluid, by investigating vibration behaviors of rectangular tank structure for various water depths.

Utilizing the grazing effect of fresh water clams (Unio douglasiae) for the remediation of algal bloom during summer

  • Nam, Ki-Woong;Lee, Jeong-Ryul;Park, Kyung-Il
    • 한국패류학회지
    • /
    • 제31권1호
    • /
    • pp.61-67
    • /
    • 2015
  • The occurrence of 'algal bloom', caused by the mass proliferation of phytoplankton, causes serious problems in streams and lakes in Korea. Therefore, in this study, the phytoplankton filter-feeding trait of Unio douglasiae, a type of freshwater clam, was used to reduce the algal bloom in outdoor water tanks during the summer. This involved the construction of a U. douglasiae cultivation apparatus, wherein 1,000 clams were divided into 8 rectangular baskets arranged in the shape of an empty square. The control tank was manufactured in exactly the same shape within the water tank, but without the addition of clams. The algal bloom-reducing effect of U. douglasiae was confirmed by the measurement of (and comparing between) the water quality at the center and periphery of the test and control cultivation apparatus. Water quality measurements included the measurement of water temperature, pH, turbidity, dissolved oxygen (DO) content, and chlorophyll-${\alpha}$ concentrations; the water quality was measured twice a month between June and November 2014.The results of these analyses did not show a significant difference in water quality (temperature, pH, turbidity, DO) between the center and periphery of the test and control tanks. However, the chlorophyll-${\alpha}$ concentration was observed to be much lower at the center of the test tank compared to that at the center and periphery of the control tank, as well as at the periphery of the test tank. This was believed to be a result of the U. douglasiae surrounding the center of the test tank, which prevented the influx of plankton from the periphery. Accordingly, the results of these analyses suggest the possibility that U. douglasiae cultivation could reduce the proliferation of algal blooms in lakes and streams during the summer. In particular, these results indicate possible improvements in U. douglasiae activity (reduction in algal blooms) by their effective arrangement in the water bodies.

장방형 침전지에서 길이에 따른 슬러지 floc의 형태에 관한 연구 (Morphological Parameters of the Sludge Flocs in a Long Rectangular Secondary Settling Tank)

  • 김영철;이진우;강민기
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.468-474
    • /
    • 2006
  • In the secondary settling tanks, three different types of settling phenomena occurs; i.e., zone settling for sludge thickening in the bottom part of settling tank, and discrete and flocculent settling for clarification in the upper part. In this paper, morphological parameters of the floc in sludge blanket layers along the length of a long rectangular tank were investigated. The plant used for this study had a serious bulking problem caused by Microthrix parvicella. Floc size decreased as the surface area of settling tank increases, which indicates that in the secondary settling tank where zone settling believed to be predominant, free or flocculent type of settling contributes to floc size distributions. Large floc particles deposit in the front zone of settling tank, but small and loose flocs mostly in the zone near its outlet. On the other hand, filament length contained in one gram of sludge blanket solid increases along the flow direction. Large flocs with less filaments settle faster, but small flocs having more filaments result in poor settling. These results support function of microorganism selection occurring in secondary settling tank. In addition, designing a long rectangluar settling tank with double hoppers might be one of the ways of bulking control, but this idea has to be verified with a further study.