• Title/Summary/Keyword: Rectangular truss

Search Result 21, Processing Time 0.017 seconds

Development of Effective Stiffness and Effective Strength for a Truss-Wall Rectangular model combined with Micro-Lattice Truss (트러스 벽면과 미세격자 트러스로 구성된 정육면체 단위모델의 강성 및 강도 개발)

  • Choi, Jeong-Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.3
    • /
    • pp.133-143
    • /
    • 2016
  • The objective in here is to find the density, stiffness, and strength of truss-wall rectangular (TWR) model which is combined with lattice truss (MLT) inside space. The TWR unit-cell model is defined as a unit cell originated from a solid-wall rectangular (SWR) model and it has an empty space inside. Thus, the empty space inside of the TWR is filled with lattice truss model defined as TWR-MLT. The ideal solutions derived of TWR-MLT are based on TWR with MLT model and it has developed by Gibson-Ashby's theory. To validate the ideal solutions of the TWR-MLT, ABAQUS software is applied to predict the density, strength, and stiffness, and then each of them are compared with the Gibson-Ashby's ideal solution as a log-log scale. Applied material property is stainless steel 304 because of cost effectiveness and easy to get around. For the analysis, SWR and TWR-MLT models are 1mm, 2mm, and 3mm truss diameter separately within a fixed 20mm opening width. In conclusion, the relative Young's modulus and relative yield strength of the TWR-MLT unit model is reasonably matched to the ideal expectations of the Gibson-Ashby's theory. In nearby future, TWR-MLT model can be verified by advanced technologies such as 3D printing skills.t.

Experimental investigation on strength of CFRST composite truss girder

  • Yinping Ma;Yongjian Liu;Kun Wang
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.667-679
    • /
    • 2023
  • Concrete filled rectangular steel tubular (CFRST) composite truss girder is composed of the CFRST truss and concrete slab. The failure mechanism of the girder was different under bending and shear failure modes. The bending and shear strength of the girder were investigated experimentally. The influences of composite effect and shear to span ratio on failure modes of the girder was studied. Results indicated that the top chord and the joint of the truss were strengthened by the composited effect. The failure modes of the specimens were changed from the joint on top chord to the bottom chord. However, the composite effect had limited effect on the failure modes of the girder with small shear to span ratio. The concrete slab and top chord can be regarded as the composite top chord. In this case, the axial force distribution of the girder was close to the pin-jointed truss model. An approach of strength prediction was proposed which can take the composite effect and shear to span ratio into account. The approach gave accurate predictions on the strength of CFRST composite truss girder under different bending and shear failure modes.

Investigations of Structural Behaviors of Steel Tower Structures by Frame Shape Variation (철탑구조의 트러스형상 변화에 따른 구조거동 분석)

  • Moon, Mi Young;Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.261-268
    • /
    • 2017
  • The purpose of this study is to analyze the ultimate strength and behavior of triangular and rectangular frames in steel towers. Investigations of collapse mechanism including local and global failures of partial frame are carried out through finite element analysis and small scaled experiments. Ultimate strength and deformation are investigated in case of shape variations with change of the interior and exterior frames. The efficiency of rectangular frame saving sub-brace members are verified with comparisons of the ultimate strength of triangular frames.

Influence of Removed Web Members in Shaping Formation for Hypar Space Truss

  • Kim Jin-Woo;Kwon Min-Ho;Lee Yong-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.2 s.69
    • /
    • pp.16-21
    • /
    • 2006
  • This paper discusses the behavior of post-tensioned and shaped hypar space truss, with consideration of the influence of removing some web members. Hypar space truss is post-tensioned at the bottom chords of one diagonal on the ground; the essential behavior characteristic of shape formation is discussed by using a small-scale test model. Results of experiments and nonlinear finite-element analysis indicate that a planar, rectangular- arranged structure can be deformed to a predicted hyper shape, by the proposed shape formation method. Also the feasibility of the proposed method for furnishing of a hypar shaped face truss has been presented, under the condition of both non-removed and partially removed web members. It follows that a nonlinear finite element analysis method can be used in predicting the behavior of the space shape and the post-tensioning force in sharing of hypar space truss. Further, in comparison to the other cases, the results of test and analysis show that the active diagonal shaping in the non-removed web members and passive diagonal shaping of partially removed web members are in relatively good agreement.

Compressive behavior of rectangular sandwich composite wall with different truss spacings

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xing-Yu;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.783-794
    • /
    • 2020
  • Steel-concrete-steel sandwich composite wall is composed of two external steel plates and infilled concrete core. Internal mechanical connectors are used to enhance the composite action between the two materials. In this paper, the compressive behavior of a novel sandwich composite wall was studied. The steel trusses were applied to connect the steel plates to the concrete core. Three short specimens with different truss spacings were tested under compressive loading. The boundary columns were not included. It was found that the failure of walls started from the buckling of steel plates and followed by the crushing of concrete. Global instability was not observed. It was also observed that the truss spacing has great influence on ultimate strength, buckling stress, ductility, strength index, lateral deflection, and strain distribution. Three modern codes were introduced to calculate the capacity of walls. The comparisons between test results and code predictions show that AISC 360 provides significant underestimations while Eurocode 4 and CECS 159 offer overestimated predictions.

A method for predicting approximate lateral deflections in thin glass plates

  • Xenidis, H.;Morfidis, K.;Papadopoulos, P.G.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.131-146
    • /
    • 2015
  • In the present paper a three-dimensional non-linear truss element and a short computer program for the modeling and predicting approximate lateral deflections in thin glass plates by the method of incremental loading are proposed. Due to the out-of-plane large deflections of thin glass plates compared to the plate thickness within each loading increment, the equilibrium and stiffness conditions are written with respect to the deformed structure. An application is presented on a thin fully tempered monolithic rectangular glass plate, laterally supported around its perimeter subjected to uniform wind pressure. The results of the analysis are compared with published experimental results and found to have satisfactory approximation. It is also observed that the large deflections of a glass plate lead to a part substitution of the bending plate behavior by a tensioned membrane behavior which is favorable.

Tensile capacity of mortar-filled rectangular tube with various connection details

  • Kim, Chul-Goo;Kang, Su-Min;Eom, Tae-Sung;Baek, Jang-Woon
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.339-351
    • /
    • 2022
  • A mortar-filled rectangular hollow structural section (RHS) can increase a structural section property as well as a compressive buckling capacity of a RHS member. In this study, the tensile performance of newly developed mortar-filled RHS members was experimentally evaluated with various connection details. The major test parameters were the type of end connections, the thickness of cap plates and shear plates, the use of stud bolts, and penetrating bars. The test results showed that the welded T-end connection experienced a brittle weld fracture at the welded connection, whereas the tensile performance of the T-end connection was improved by additional stud bolts inserted into the mortar within the RHS tube. For the end connection using shear plates and penetrating stud bolts, ductile behavior of the RHS tube was achieved after yielding. The penetrating bars increased load carrying capacity of the RHS. Based on the analysis of the load transfer mechanism, the current design code and test results were compared to evaluate the tensile capacity of the RHS tube according to the connection details. Design considerations for the connections of the mortar-filled RHS tubes were also recommended.

Behavior of L-shaped double-skin composite walls under compression and biaxial bending

  • Qin, Ying;Chen, Xin;Xi, Wang;Zhu, Xingyu;Chen, Yuanze
    • Steel and Composite Structures
    • /
    • v.37 no.4
    • /
    • pp.405-418
    • /
    • 2020
  • The application of double-skin composite wall should meet different layout plans. However, most available research focused on the rectangular section with uniform axial compression. In this research, the structural behavior of double-skin composite wall with L section was studied. Due to the unsymmetric geometric characteristics, the considered loading condition combined the axial compression and biaxial bending. Five specimens were designed and tested under eccentric compression. The variables in the test included the width of the web wall, the truss spacing, the thickness of the steel faceplate, and the thickness of the web wall. The test results were discussed in terms of the load-displacement responses, buckling behavior, stiffness, ductility, strength utilization, strain distribution. Two modern codes were employed to predict the interaction between the axial compression and the biaxial bending. The method to calculate the available bending moment along the two directions was proposed. It was found that CECS 159:2004 offers more suitable results than AISC 360.

A Study on Characteristics of the Modern Warehouse in Gunsan and Its Value as Industrial Heritage (군산의 근대 창고건물 현황 및 산업유산으로서의 가치에 관한 연구)

  • Pak, Sung-Sine
    • Journal of architectural history
    • /
    • v.20 no.6
    • /
    • pp.21-39
    • /
    • 2011
  • This research is to analyze the modern warehouses in Gunsan during the Japanese Colonial Period. They were the spatial and urban symbol of City of Rice, Gunsan. The main purpose of this study is to survey the modern warehouses in the original center of city, to find their architectural characteristics and to set up a possibility of reuse. 7 existing warehouse buildings are located at Jangmi-Dong and Jooksung-Dong, and they have been built between 1935 and 1940. The warehouse buildings have a module of 6m and they are generally 12m wide, 24~48m long and 8m high. Their structure is composed of reinforced concrete and wooden truss. All warehouse buildings have a rectangular form. Now the diverse commercial programs occupy the original space. Modern warehouse in Gunsan has the spatial and symbolic value as industrial heritage. Therefore, it is necessary to respect the original value of modern warehouse and to create a reusing space for the current generation. It is also essential to verify restoring possibility of three symbolic warehouse buildings in the harbour that were demolished.

Experimental compressive behavior of novel composite wall with different width-to-thickness ratios

  • Qin, Ying;Chen, Xin;Zhu, Xing-Yu;Xi, Wang;Chen, Yuan-Ze
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.187-196
    • /
    • 2020
  • Double skin composite wall system owns several structural merits in terms of high load-carrying capacity, large axial stiffness, and favorable ductility. A recently proposed form of truss connector was used to bond the steel plates to the concrete core to achieve good composite action. The structural behavior of rectangular high walls under compression and T-shaped high walls under eccentric compression has been investigated by the authors. Furthermore, the influences of the truss spacings, the wall width, and the faceplate thickness have been previously studied by the authors on short walls under uniform compression. This paper experimentally investigated the effect of width-to-thickness ratio on the compressive behavior of short walls. Compressive tests were conducted on three short specimens with different width-to-thickness ratios. Based on the test results, it is found that the composite wall shows high compressive resistance and good ductility. The walls fail by local buckling of steel plates and crushing of concrete core. It is also observed that width-to-thickness ratio has great influence on the compressive resistance, initial stiffness, and strain distribution across the section. Finally, the test results are compared with the predictions by modern codes.