• Title/Summary/Keyword: Rectangular section

Search Result 577, Processing Time 0.025 seconds

Local Behaviour of Propagating Flames in an Explosion Chamber (폭발챔버에서 전파하는 화염의 국부 거동)

  • Park, Dal-Jae;Lee, Young-Soon
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.2
    • /
    • pp.32-35
    • /
    • 2011
  • Experimental studies were carried out in an explosion chamber to investigate the influences of multiple cylinder obstacles on local flame propagation. The chamber dimension is 235 mm in height with a $1,000{\times}950\;mm^2$ rectangular cross section and a large vent area of $1,000{\times}320\;mm^2$. Multiple cylinder bars with obstruction ratio of 30% were used. In order to examine the interaction between the propagating flames and the obstacles, temporally resolved flame front images were recorded by a high speed video camera. The propagation behaviour of local flame fronts around the left obstacle was analyzed in terms of two different methods such as the incremental burnt area divided by the flame front length and the average of the local propagation velocity determined at each point along the flame front. It was found that two methods give good consistency.

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

Numerical Analysis on Penetration Reduction of a WHA Penetrator by an Impact of Linear Explosively Formed Penetrator(LEFP) (선형폭발성형탄(LEFP) 충격에 의한 WHA 관통자의 관통성능 감소에 관한 수치해석 연구)

  • Joo, Jaehyun;Choi, Joonhong;Koo, ManHoi;Kim, Dongkyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.384-392
    • /
    • 2017
  • A linear explosively formed penetrator(LEFP) is a modification of the explosively formed penetrator(EFP). An EFP is axisymmetric and has a dish-shaped liner while LEFP has a rectangular-shaped liner with curved cross section. Upon detonating LEFP forms laterally wide projectile like blade, leaving a long penetration hole on the target. On the other hand, a long-rod tungsten heavy alloy(WHA) penetrator is one of the major threats against most of the ground armored vehicles. In this paper, the feasibility of using an LEFP in protecting against a long-rod WHA penetrator by colliding LEFP into the threat was investigated through a set of numerical simulations. In this study, a scale-down WHA penetrator with length to diameter ratio(L/D) of 10.7 and 7.0 mm diameter was used to represent a long-rod WHA penetrator. LS-DYNA and Multi-Material ALE technique were employed for the simulation. For estimation of the protection effect by LEFP, residual penetration depths into RHA by the threat were compared according to various impact locations against the threat.

Experimental Study on Ductility of RC Columns According to Configuration of Transverse Reinforcement (횡보강근 배근형상에 따른 RC 기둥의 연성에 관한 실험적 연구)

  • Kim, Min Jun;Kim, Do Jin;Kim, Sang Woo;Lee, Jung Yoon;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.18-25
    • /
    • 2012
  • This paper estimates the ductility of reinforced concrete columns according to configurations of transverse reinforcement. A total of 8 reinforced concrete columns were cast and tested in flexure. The test variables in this study were the configurations, yield strength, and amount of transverse reinforcement. The specimens had a cross-section of $250{\times}250mm$ and had a shear span-to-depth ratio of 4.1 to induce flexural failure. In the test, cyclic lateral load was applied to the specimens with a constant axial load. The experimental result indicated that the specimens with proposed configurations of transverse reinforcement showed higher ductility and energy dissipation capacity than the specimens with rectangular tie.

Aeroelastic Stability Analysis of Bearingless Rotors with Composite Flexbeam in Hover (복합재 유연보를 갖는 무베어링 로우터 시스템의 정지 비행시 공탄성 안정성 해석)

  • Lim, In-Gyu;Choi, Ji-Hoon;Lee, In;Han, Jae-Hung
    • Composites Research
    • /
    • v.17 no.3
    • /
    • pp.29-37
    • /
    • 2004
  • The aeroelastic stability analysis of composite bearingless rotors is investigated using a large deflection beam theory in hover. The bearingless rotor configuration consists of a single flexbeam with a wrap-around type torque tube and the pitch links located at the leading edge and trailing edge of the torque tube. The outboard main blade, flexbeam and torque tube are all assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections, which are discretized into beam finite elements. For the analysis of composite bearingless rotors, flexbeam is assumed to be a rectangular section made of laminate. Two-dimensional quasi-steady strip theory is used for aerodynamic computation. The finite element equations of motion for beams are obtained from Hamilton's principle. The p-k method is used to determine aeroelastic stability boundary. Numerical results are presented for selected bearingless rotor configurations based on the lay-up of laminae in the flexbeam and pitch links location. A systematic study is made to identify the importance of the stiffness coupling terms on aeroelastic stability for various fiber orientation and for different configuration.

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF

An Analysis of Thermal Stress and Angular Distortion in Bead-on-Plate Welding Incorporating Constrained Boundary Conditions (판재의 비드 용접에서 구속경계조건을 적용한 열응력 및 각변형 해석)

  • 배강열;최태완
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 1999
  • There have been many studies on the two dimensional thermo-elasto-plastic analysis in welding process, mostly from viewpoint of residual stresses. In this study, the temperature distribution, transient thermal stress, and angular distortion during bead-on-plate gas metal arc welding of rectangular plates were analyzed by using the finite element method. A nonlinear heat transfer analysis was first performed by taking account of the temperature-dependent material properties and convection heat losses on the surface. This was followed by a thermo-elasto-plastic stresses and distortion analysis that incorporates the constrained boundary condition of the two dimensional solution domain to get the three dimensional size effect of the plate. The constrained boundary conditions adopted in this study were the constant displacement condition over the whole two dimensional section for axial movement in the welding direction, and the force boundary condition for rotational movementof the domain around the axis of the welding direction. It could be revealed that the theoretical predictions of the angular distortion have an improved agreement with the experimentally obtained data presented in the previous study.

  • PDF

The estimation of friction coefficient by using entropy theory in open channels (엔트로피 이론에 의한 개수로 마찰계수 산정)

  • Choo, Tai Ho;Kwak, Kil Sin;Yun, Gwan Seon;Yoon, Hyeon Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2868-2875
    • /
    • 2015
  • Both the friction velocity and the friction coefficient have to be estimated to determine flow characteristic in an open channel. In spite of the importances in an open channel, the complete interpretation is highly difficult because of free water surface, the complex of cross section and the various hydraulic parameters. The researches related to the friction factor are based on empirical outcome. Therefore, the equations are difficult to be generally applied. For that reason, the new friction factor estimation equation using the entropy concept was proposed in the present study, and the data measured in rectangular and trapezoid cross sections was used to verify the accuracy of equation. The advantage of the proposed equation dose not use the energy slope term which is difficult to be measured and to be estimated in an open channel. In addition, the proposed method showed that the accurate friction factor f can be estimated on the Basis of theoretical background.

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Evaluation of Shear Behavior of Precast RC Beams According to Replacement Ratio of Ground Granulated Blast Furnace Slag (고로슬래그 미분말 치환율에 따른 프리캐스트 철근콘크리트 보의 전단거동 평가)

  • Jeong, Chan-Yu;Kim, Young-Seek;Lee, Jin-Seop;Kim, Sang-Woo;Kim, Kil-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2014
  • This study evaluates the shear performance of precast beams with ground granulated blast furnace slag. A total of four specimens according to replacement ratio of ground granulated blast furnace slag. The specimens under three loading points had a shear span-to-depth ratio of 2.5, and a rectangular section with a width of 200mm and a effect depth of 300 mm. In this study, existing equations were used for predicting the shear strength of the specimens. The shear strength by existing equations was compared with those of 89 reinforced concrete beams without shear reinforcement. It can be shown from experimental results that all specimens with ground granulated blast furnace slag showed a similar shear strength as compared with the specimen with portland cements alone.