• Title/Summary/Keyword: Rectangular patch

Search Result 213, Processing Time 0.045 seconds

Design of Series-Fed Microstrip Patch Array Antennas for Monopulse Radar Sensor Applications (모노 펄스 레이더 센서용 직렬 급전 마이크로스트립 패치 배열 안테나 설계)

  • Park, Eui-Joon;Jung, Ik-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.11
    • /
    • pp.1248-1258
    • /
    • 2010
  • In this paper, a method for simultaneously realizing the sum and difference patterns which are required in the monopulse radar sensor systems, is presented by using single taper array antenna with rectangular microstrip patches. The widths of patches are first determined by the voltage weights which are synthesized for the fundamental array factor patterns to be applied to the monopulse operation by using the sidelobe levels(SLLs) control technique. As the bi-directionally series-fed technique is applied and the lengths of connecting lines between patches are appropriately adjusted, the single array generates two phase-shifted beams which activates out-of-phase and in-phase ports of a $180^{\circ}$ hybrid coupler to synthesize the sum and difference patterns. The simulated results on the configuration designed at 9.5 GHz are compared with measured results showing the validity of the proposed method.

The Design of Compact and wideband antenna for wireless LAN at 5GHz band (5GHz대역 무선랜용 소형 광대역 안테나 설계)

  • Park Kyoung-Su;Choi Sung-Youl;Shin Phil-Soo;Ko Young-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.6 s.324
    • /
    • pp.93-99
    • /
    • 2004
  • According to rapid increment of demand for wireless Local Area Network (LAN), the HyperLAN of 5.1-533GHz and 5.725-5.825GHz is newly allocated for wireless LAM in many regions over the world. Also, because most of mobile communication equipments are small, the size of antenna is important factor of effective design. In this paper, the compacted and wide bandwidth antenna is designed for wireless LAN at 5GHz band. Although the structure of U-shaped slot antenna is simple, It has large bandwidth of $10-40\%$. Also, the U-slot antenna has good radiation pattern. However, in general, the size of U-slot antenna is large. Therefore, it is difficult to apply to wireless equipment such as PDA and Notebook. This proposed antenna has a wide bandwidth by U-shaped slot in rectangular patch and is compacted by using two layered dielectric substrates and foam. For the design of U-slot antenna, the Finite Difference Time Domain method is applied. Also, the method of MPI parallel program is used for the enhancement of the analyzing speed of the FDTD method.

Design of a Broadband Quasi-Yagi Antenna with a 2:1 Impedance Bandwidth Ratio (2:1 임피던스 대역폭 비를 가지는 광대역 quasi-Yagi 안테나 설계)

  • Lee, Jong-Ig;Yeo, Jun-Ho;Park, Jin-Taek
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.760-765
    • /
    • 2012
  • In this paper, we studied a design method for a quasi-Yagi antenna (QYA) with broadband characteristics of an impedance bandwidth ratio greater than 2 : 1 and a gain > 4 dBi. The QYA is fed by a microstrip line fabricated on a coplanar strip line and it consists of 3 elements; a planar dipole, a nearby director close to the dipole, and a ground plane reflector. By placing a wide rectangular patch-type director near to the dipole driver, broadband characteristics are achieved. An optimized 3-element QYA for operation over 1.6-3.5 GHz (bandwidth ratio 2.2 : 1) is fabricated on an FR4 substrate with a size of 90 mm by 90 mm and tested experimentally. The results show an impedance bandwidth of 1.56-3.74 GHz (bandwidth ratio 2.4 : 1) for VSWR < 2, a peak gain of 4.2-6.3 dBi, and a front-to-back ratio (FBR) > 13.6 dB within the bandwidth.

Analysis and fabrication of a wearable antenna using conductive fibers (전도성 실 재질을 이용한 웨어러블 안테나의 제작 및 분석)

  • Nguyen, Tien Manh;Chung, Jae-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2770-2776
    • /
    • 2015
  • The development of efficient wearable antennas is required to implement short range body-centric wireless communication links for various internet of thing applications. We present simulation and measurement results of conductive-fiber-based wearable antennas which can comfortably fabricated directly on usual clothing materials. The proposed antenna is a form of a rectangular patch antenna designed by weaving conductive fibers on a felt substrate. A full-wave electromagnetic simulation tool is used to investigate the antenna performance such as antenna impedance, resonant frequency, and radiation efficiency. Parametric studies show that the radiation efficiency increases from 67.5% to 70.4% by widening the gap between conductive fibers from 0.25mm to 3mm. This implies a wearable antenna with good radiation efficiency can be designed despite of less portion of conductive fibers on the antenna. The simulation results are also verified by measured results with fabricated antennas.

Design of Wide-Band, High Gain Microstrip Antenna Using Parallel Dual Slot and Taper Type Feedline (평행한 이중 슬롯과 Taper형 급전선로를 이용한 광대역, 고이득 마이크로스트립 안테나의 설계)

  • Lee, Sang-Woo;Lee, Jae-Sung;Kim, Chol-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.3 s.118
    • /
    • pp.257-264
    • /
    • 2007
  • In this paper, we have designed and fabricated a wide-band and high gain antenna which can integrate a standard of IEEE 802.1la$(5.15\sim5.25\;GHz,\;5.25\sim5.35\;GHz,\;5.725\sim5.825\;GHz)$. We inserted a parallel dual slot into a rectangular patch to have wide-band, and we offset an element of capacitance from the slot by using coaxial probe feeding method. We also designed a converter of $\lambda_g/4$ impedance with taper type line so that wide-band impedance can be matched easily. We finally designed structure with $2\times2$ array in order to improve the antenna gain, and the final fabricated antenna could have a good return loss(Return loss$\leq$-10 dB) and a high gain(over 13 dBi) at the range of $5.01\sim5.95\;GHz(B/W\doteqdot940\;MHz)$.

The Design of 800MHz Band Repeater Antenna for Ship Base Station Application (선박기지국 응용을 위한 800MHz 대역 중계기용 안테나 설계)

  • Kim, Kab-Ki
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.219-222
    • /
    • 2007
  • In this paper, we have designed microstrip antenna of 800[MHz] band. It will be able to integrate TRS(Trunked Radio System), GSM(Global System for Mobile telecommunication) band including the CDMA(Code Division Multiple Access) band. we designed repeater and a base station antenna which is possible at the ship and marine of safety. It is improves a narrow bandwidth problem of microstrip antenna. It had L-shaped feeding structure at a rectangular patch and added the parallel L-slot that used a duplex resonance effect. Also for the improvement of profit the stack with the perpendicular. Designed frequency bandwith(VSWR 2:1) of the antenna showed good characteristic of 789${\sim}$1046[MHz] to 292[MHz](36%). Also the E-plan and H-plan all profit 6.4[dBi] above, the 3[dB] beam width showed the characteristic over the E-plan $44.7^{\circ} and H-plan $61.8^{\circ} to be improved.

  • PDF

Ultra High-Gain Displaced-Axis Metal Reflectarray Antenna for Millimeter-Wave Region (밀리미터파 대역의 초고이득 축이동 금속배열안테나)

  • Yi, Minwoo;Yang, Jongwon;Lee, Woosang;Jang, Won;So, Joonho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.342-349
    • /
    • 2016
  • We design a displaced-axis Gregorian dual antenna in the form of a metal reflectarray antenna for millimeter wave region, W-band. Unlike a reflectarray composed of printed patch antennas on a dielectric substrate, metallic rectangular waveguide unit-cells are proposed to avoid the loss of substrate and take an advantage of ease of typical metal machining fabrication. In this paper, the radiation characteristics of constructed metal reflectarray antennas show ultra high-gain antenna over 50 dBi at a target frequency in W-band. The experimental measurements are conducted in millimeter-wave compact range antenna measurement system.

Design of Broadband Planar Dipole Antenna for Indoor Digital TV Reception (실내 디지털 TV 수신용 광대역 평면 다이폴 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Park, Jin-Taek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.497-502
    • /
    • 2014
  • In this paper, a design method for a broadband planar dipole antenna for terrestrial digital television (DTV) reception is studied. The dipole is modified to half bow-tie type for size reduction. The balun between feeding microstrip line and coplanar strip (CPS) line is implemented with a rectangular patch inserted along the center of the CPS line. The proposed antenna is the structure of dual resonances, one is due to the dipole and the other is due to the CPS line attached by the balun. The effects of various geometrical parameters on the antenna performance are examined, and the antenna is designed for terrestrial DTV band (470-806 MHz). The prototype antenna is fabricated on an FR4 substrate with a size of $95mm{\times}178mm$, and tested experimentally to verify the results of this study.

Design and Manufacture of Modified Circular Ring antenna for WLAN/WiMAX Applications (WLAN/WiMAX 시스템에 적용 가능한 변형된 원형 링 안테나 설계와 제작)

  • Lim, Dae-Soo;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.268-275
    • /
    • 2014
  • In this paper, a dual-band circular ring monopole antenna with stub and ground slot for WLAN(Wireless Local Area Networks)/WiMAX(World interoperability for Microwave Access) applications. The proposed antenna is based on a planar monopole design, and composed of one circular ring of radiating patch, cross strip in circular ring, modified feed line, and two rectangular slot in the ground plane for triple-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that greatly effect antenna characteristics. Using the obtained parameters, the antenna is fabricated. The numerical and experiment results demonstrated that the proposed antenna satisfied the -10 dB impedance bandwidth requirement while simultaneously covering the WLAN and WiMAX bands. And characteristics of gain and radiation patterns are determined for WLAN/WiMAX application.

Development of Algorithm for Predicting Fretting Wear (프레팅 마멸 예측을 위한 알고리즘 개발)

  • Cho, Yong-Joo;Kim, Tae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.983-989
    • /
    • 2011
  • A numerical algorithm for predicting fretting wear was developed using the boundary element method (BEM). A contact analysis was performed numerically using the relation between the elastic displacement and uniformly distributed loading of a rectangular patch on a semi-infinite solid. Geometrical updating based on nodal wear depths was performed. The wear depths were computed using the Archard's equation for sliding wear. In order to investigate the efficiency of BEM for predicting fretting wear, a problem involving a two-dimensional cylinder on a flat contact was analyzed, comparing it with the simulation model proposed by McColl et al. that was based on the finite element method. The developed method was then applied to the analysis of a spherical contact and it was shown that the developed simulation technique could efficiently predict fretting wear. Moreover, the effect of a step cycle on the solution obtained by the developed method was investigated.