• 제목/요약/키워드: Rectangular cylinder

검색결과 118건 처리시간 0.025초

Impact of the lateral mean recirculation characteristics on the near-wake and bulk quantities of the BARC configuration

  • Lunghi, Gianmarco;Pasqualetto, Elena;Rocchio, Benedetto;Mariotti, Alessandro;Salvetti, Maria Vittoria
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.115-125
    • /
    • 2022
  • The high-Reynolds number flow around a rectangular cylinder, having streamwise to crossflow length ratio equal to 5 is analyzed in the present paper. The flow is characterized by shear-layer separation from the upstream edges. Vortical structures of different size form from the roll-up of these shear layers, move downstream and interact with the classical vortex shedding further downstream in the wake. The corresponding mean flow is characterized by a recirculation region along the lateral surface of the cylinder, ending by mean flow reattachment close to the trailing edge. The mean flow features on the cylinder side have been shown to be highly sensitive to set-up parameters both in numerical simulations and in experiments. The results of 21 Large Eddy Simulations (LES) are analyzed herein to highlight the impact of the lateral mean recirculation characteristics on the near-wake flow features and on some bulk quantities. The considered simulations have been carried out at Reynolds number Re=DU_∞/ν=40 000, being D the crossflow dimension, U_∞ the freestream velocity and ν the kinematic viscosity of air; the flow is set to have zero angle of attack. Some simulations are carried out with sharp edges (Mariotti et al. 2017), others with different values of the rounding of the upstream edges (Rocchio et al. 2020) and an additional LES is carried out to match the value of the roundness of the upstream edges in the experiments in Pasqualetto et al. (2022). The dimensions of the mean recirculation zone vary considerably in these simulations, allowing us to single out meaningful trends. The streamwise length of the lateral mean recirculation and the streamwise distance from the upstream edge of its center are the parameters controlling the considered quantities. The wake width increases linearly with these parameters, while the vortex-shedding non-dimensional frequency shows a linear decrease. The drag coefficient also linearly decreases with increasing the recirculation length and this is due to a reduction of the suctions on the base. However, the overall variation of C_D is small. Finally, a significant, and once again linear, increase of the fluctuations of the lift coefficient is found for increasing the mean recirculation streamwise length.

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

원통형 구조 전자파 잔향실 내 모드 및 필드 분포 특성 (The Characteristics of Field & Mode Distributions in a Cylindrical Reverberation Chamber)

  • 김정훈;이중근
    • 한국전자파학회논문지
    • /
    • 제14권5호
    • /
    • pp.431-436
    • /
    • 2003
  • 본 논문에서는 전자파 장해 및 복사내성 측정에 사용되는 준전자파 무반사실의 대용 방법으로 활용될 수 있는 전자파 잔향실 중에서 원통형 구조 전자파 잔향실의 전자기장 특성과 모드 분포를 연구하여 원통형 구조 전자파 잔향실의 모드 수 계산법을 제시하였으며, 이것을 사용하여 체적이 동일한 원통형 전자파 잔향실의 모드수를 반지름과 높이 비에 따라 비교 분석하였다. 또한 각각의 체적이 동일한 직사각형, 직각 이등변 삼각형, 원통형의 전자파 잔향실의 필드 균일도를 FDTD(Finite-Difference Time-Domain)를 이용하여 비교 해석하였다.

복합소재 교량용 방호울타리의 최적 적층 단면 도출을 위한 낙하 충돌시험 (The Fall Impact test for Extraction of Optimal Stacking Section of Composite Safety Barrier for Bridge)

  • 홍갑의;전신열;김기승;김승억
    • 복합신소재구조학회 논문집
    • /
    • 제2권1호
    • /
    • pp.1-7
    • /
    • 2011
  • 본 논문에서는 복합소재 방호울타리의 6가지 적층 단면에 대한 충돌시뮬레이션을 실시하여 최적 적층 단면을 결정하였다. 먼저 6가지 단면 형상에 대하여 설문 조사를 통하여 형상을 결정하였다. 결정된 보 단면에 대하여 6가지 적층설계를 하였다. 적층에는 CSM, DB, DBT, Roving 섬유를 사용하였다. LS-DYNA를 사용하여 수평 및 3:1 경사에 대한 복합소재 보를 모델링하였다. 직육면체 추 및 원통형 추를 사용하여 낙하 충돌 시뮬레이션을 실시하였다. 시뮬레이션결과를 비교 분석하여 최적 적층 단면을 도출하였다.

두 개의 뜨거운 원형 실린더가 존재하는 사각형 실린더 내부의 자연대류에 관한 수치적 연구 (A Numerical Study of Natural Convection in a Square Enclosure with two Hot Circular Cylinders)

  • 박성현;박용갑;하만영;윤현식;손창민
    • 설비공학논문집
    • /
    • 제24권3호
    • /
    • pp.247-255
    • /
    • 2012
  • Numerical calculations are carried out for the natural convection in a square enclosure with two hot cylinders induced by temperature difference between a cold outer rectangular cylinder and two hot circular cylinders. A two-dimensional solution for unsteady natural convection is obtained, using the immersed boundary method (IBM) to model two inner circular cylinders based on finite volume method, for different Rayleigh numbers varying over the range of $10^3$ to $10^5$. The study goes further to investigate the effect of the location of two cylinders on the heat transfer and fluid flow. The location of inner circular cylinders is changed vertically along the center-line of square enclosure. The changes of heat transfer quantities have been presented.

팬터그래프 팬헤드 강건최적형상에 대한 공기역학적 특성에 관한 실험적 연구 (An Experimental Study on the Aerodynamic Characteristics of the Robust Optimized Shape of Pantograph Panhead)

  • 노주현;곽민호;박훈일;이영빈;이동호;조환기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.2224-2229
    • /
    • 2008
  • High-Speed train has been developed and it becomes faster and environmental friendly. As trains run faster, Noise of trains is generated mainly by aerodynamic disturbance. Pantograph, both ends of trains, and gaps of coaches which are thought to be aerodynamic noise's factors are primarily studied. Pantograph is a similarly shaped metal framework on the roof of an electric high speed train, transmitting current from an overhead electric catenary wire. Panhead which contacts electric wires directly looks like a bluff strut, goes through flows, is sensitive to external disturbances and is one of the most important factors which decide whole vehicles' driving ability. In this study, aerodynamically robust optimized pantograph panhead shape is designed and then evaluated through subsonic wind tunnel test. To compare these with existing panhead rectangular shapes or circular cylinder shapes, By visualizing strong vortex flow patterns which are main noise sources, characteristics are compared and analyzed

  • PDF

다공튜브 오리피스 면적비 변화가 출구유동에 미치는 영향 (Effect of the Orifice Area Ratio on the Exit Flow of a Multi-Perforated Tube)

  • 이상규;이지근
    • 설비공학논문집
    • /
    • 제25권6호
    • /
    • pp.317-323
    • /
    • 2013
  • A multi-perforated tube indicates the existence of multiple holes of various shapes on the surface of a long cylinder-type or rectangular tube, and a hole installed on the surface is called an orifice, as it is relatively small in size, compared with the surface area of the tube. In this study, the flow characteristics of a circular multi-perforated tube with many orifices on the surface were investigated experimentally and numerically. The volume flowrate issuing from each orifice, discharge angle, effective flow area ratio, and the flow fields around the orifices were measured and visualized, with the variation of the orifice area ratio, at the same blockage ratio. The volume flowrate distributions along the flow direction of the multi-perforated tube tends to be more uniform, as larger orifices were positioned at the inlet side of the multi-perforated tube, compared with no orifice area change along the flow direction.

North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계 (Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore)

  • 송준호;김용운;이경석;김만수
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

2차원 자유표면파 문제에서의 국소 유한요소법의 응용 (An Application of the Localized Finite Element Method to Two-dimensional Free Surface Wave Problems)

  • 길현권;배광준
    • 대한조선학회지
    • /
    • 제22권3호
    • /
    • pp.9-18
    • /
    • 1985
  • The numerical calculation for solving boundary-value problem related to potential flows with a free surface is carried out by application of the localized finite element method. Only forced motion of 2-D body in infinitely deep fluid is considered, although this schemes is equally applicable to any first order time-harmonic problems of similar nature. The infinite domain of the fluid is separated into the inner flow field and the outer flow field with common inter-surface boundary. The finite element method is applied to obtain the solution in the inner flow field and the Green functions are utilized to represent the solution in the outer flow field. At the inter-surface boundary, the continuity of the value of potential and the normal derivative of the potential(i.e. matching condition) is conserved. The present method has better computational efficiency than the previous LFEM and the integral equation method of Frank. This enhanced computational efficiency is presumably due to the fact that the present method gives a symmetric coefficient matrix and requires less computational time in calculating the influence coefficient matrix of Green function than the integral equation method. And the irregular frequency desen't exist because the uniqueness of the solution is assured by the such that the exact free surface condition is satisfied on the boundary of the localized finite element region(i.e. inner region). As an example of the above method, the hydrodynamic forces for the circular cylinder and the rectangular cylinders are calculated. In the computed results, the small number of singularity distribution segments($3{\sim}6$) give good result relative to Ursell's and Vugts'.

  • PDF

마이크로 NCT에 의한 대칭형상구멍의 전단특성 (Characteristics of Symmetric-Shape Parts Shearing on Micro NCT)

  • 홍남표;김병희;장인배;김헌영;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.285-291
    • /
    • 2002
  • The shearing process for the sheet metal is normally used in the precision elements such as a frame of TFT-LCD or lead frame of If chips. In these precision elements, the burr formation prevents the system assembly and needs the additional burr removing process. In this paper, we developed the small size NC punching system which has an aligning kinematics between the rectangular shaped punch and die. The punch is driven by an ai cylinder and the sheet metal is moving on the X-Y table system which is driven by two stewing motors. The microprocessor control the whole system and communicate with the monitoring PC by RS232C serial communication protocol. The graphic user interface program in PC monitors nil control the punching system. The cross shaped joint hinge supports the punching die and positioned by two differential screws, whose are installed in perpendicular directions. The aligning between the punch and die is performed using the sheets of half thickness(0.1mm Brass) of the real process for the frame of the TFT-LCD. Using half thickness Brass, the burr formation is magnified and we can decide the aligning direction more easily then using the real thickness(0.2mm) Aluminum. In this paper, the aligning results are measured manually using the SEM photographs and we hope to make the automated aligning procedures using some kinds of image processing techniques.

  • PDF