• Title/Summary/Keyword: Rectangular Plates

Search Result 469, Processing Time 0.026 seconds

Elastic bending analysis of irregular-shaped plates

  • Sakiyama, T.;Huang, M.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.289-302
    • /
    • 1999
  • An approximate method for analyzing the bending problems of irregular-shaped plates is proposed. In this paper irregular-shaped plates are such plates as plate with opening, circular plate, semi-circular plate, elliptic plate, triangular plate, skew plate, rhombic plate, trapezoidal plate or the other polygonal plates which are not uniform rectangular plates. It is shown that these irregular-shaped plates can be considered finally as a kind of rectangular plates with non-uniform thickness. An opening in a plate can be considered as an extremely thin part of the plate, and a non-rectangular plate can be translated into a circumscribed rectangular plate whose additional parts are extremely thin or thick according to the boundary conditions of the original plate. Therefore any irregular-shaped plate can be replaced by the equivalent rectangular plate with non-uniform thickness. For various types of irregular-shaped plates the convergency and accuracy of numerical solution by proposed method are investigated.

Experimental and numerical modeling of uplift behavior of rectangular plates in cohesionless soil

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.341-358
    • /
    • 2014
  • Uplift response of rectangular anchor plates has been investigated in physical model tests and numerical simulation using Plaxis. The behavior of rectangular plates during uplift test was studied by experimental data and finite element analyses in cohesionless soil. Validation of the analysis model was also carried out with 200 mm and 300 mm diameter of rectangular plates in sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 200 mm and 300 mm computed maximum displacements were excellent for rectangular anchor plates. Numerical analysis using rectangular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in dense and loose packing of cohesionless soil.

Eigenfrequencies of simply supported taper plates with cut-outs

  • Kalita, Kanak;Haldar, Salil
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.103-113
    • /
    • 2017
  • Free vibration analysis of plates is necessary for the field of structural engineering because of its wide applications in practical life. Free vibration of plates is largely dependent on its thickness, aspect ratios, and boundary conditions. Here we investigate the natural frequencies of simply supported tapered isotropic rectangular plates with internal cutouts using a nine node isoparametric element. The effect of rotary inertia on Eigenfrequencies was demonstrated by calculating with- and without rotary inertia. We found that rotary inertia has a significant effect on thick plates, while rotary inertia term can be ignored in thin plates. Based on comparison with literature data, we propose that the present formulation is capable of yielding highly accurate results. Internal cutouts at various positions in tapered rectangular simply supported plates were also studied. Novel data are also reported for skew taper plates.

Free vibration analysis of pores functionally graded plates using new element based on Hellinger-Reissner functional

  • Majid Yaghoobi;Mohsen Sedaghatjo;Mohammad Karkon;Lazreg Hadji
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.713-728
    • /
    • 2023
  • This paper aims to investigate the free vibration analysis of FG plates, taking into account the effects of even and uneven porosity. The study employs the Hellinger-Reisner functional and obtains the element's bending stress and membrane stress fields from the analytical solution of the governing equations of the thick plate and plane problem, respectively. The displacement field serves as the second independent field. While few articles on free vibration analysis of circular plates exist, this paper investigates the free vibration of both rectangular and circular plates. After validating the proposed element, the paper investigates the effects of porosity distributions on the natural frequency of the FG porous plate. The study calculates the natural frequency of thin and thick bending plates with different aspect ratios and support conditions for various porosity and volume fraction index values. The study uses three types of porosity distributions, X, V, and O, for the uneven porosity distribution case. For O and V porosity distribution modes, porosity has a minor effect on the natural frequency for both circular and rectangular plates. However, in the case of even porosity distribution or X porosity distribution, the effect of porosity on the natural frequency of circular and rectangular plates increases with an increase in the volume fraction index.

Buckling Analysis of Stiffened Plates with Elastic Supports Subjected to In-Plane Bending Moment Considering Warping of End Stiffeners (지지단 보강재의 뒤틀림을 고려한 면내휨을 받는 탄성지지 보강판의 좌굴해석)

  • 이용수
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.135-148
    • /
    • 1997
  • The main objective of this paper is to analyze the rectangular stiffened plates with two opposite ends elastically restrained and the others simply supported subjected to in-plane bending by Finite Element Method. Another objective is to develope Classical Method analyzing the unstiffened rectangular plates with the above boundary conditions. In order to validate finite element and classical methods, the buckling strengths of the rectangular plates with four simply supported ends, and with two simply supported and the others fixed ends by finite element method and classical method are compared with those of references. In finite element method, elastically restrained ends can be obtained as considering torsional and warping rigidities of end stiffeners. The buckling strengths of the rectangular plates with elastically restrained ends by finite element and classical methods are calculated and compared with each other. In case of stiffened plates, to validate finite element method, the buckling strengths of the rectangular stiffened plates with four simply supported ends, and with two simply supported and the others fixed ends are also compared with those of references. The buckling strengths of the rectangular stiffened plates with elastically restrained ends by finite element method are calculated as solving eigenvalue problems which are obtained as assembling rectangular plate elements and beam elements considered torsional and warping rigidities. The buckling strengths of rectangular stiffened plates according to various positions of rectangular intermediate stiffener, J and I/sub w/ of end stiffeners are also obtained, which are compared to determine the efficient position of intermediate stiffener.

  • PDF

Analytical solutions for vibrations of rectangular functionally graded Mindlin plates with vertical cracks

  • Chiung-Shiann Huang;Yun-En Lu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.69-83
    • /
    • 2023
  • Analytical solutions to problems are crucial because they provide high-quality comparison data for assessing the accuracy of numerical solutions. Benchmark analytical solutions for the vibrations of cracked functionally graded material (FGM) plates are not available in the literature because of the high level of complexity of such solutions. On the basis of first-order shear deformation plate theory (FSDT), this study proposes analytical series solutions for the vibrations of FGM rectangular plates with side or internal cracks parallel to an edge of the plates by using Fourier cosine series and the domain decomposition technique. The distributions of FGM properties along the thickness direction are assumed to follow a simple power law. The proposed analytical series solutions are validated by performing comprehensive convergence studies on the vibration frequencies of cracked square plates with various crack lengths and under various boundary condition combinations and by performing comparisons with published results based on various plate theories and the theory of three-dimensional elasticity. The results reveal that the proposed solutions are in excellent agreement with literature results obtained using the Ritz method on the basis of FSDT. The paper also presents tabulations of the first six nondimensional frequencies of cracked rectangular Al/Al2O3 FGM plates with various aspect ratios, thickness-to-width ratios, crack lengths, and FGM power law indices under six boundary condition combinations, the tabulated frequencies can serve as benchmark data for assessing the accuracy of numerical approaches based on FSDT.

Effect of Water Level on the Hydroelastic Vibration of Two Rectangular Plates Coupled with Water (물로연성된 두 직사각평판의 접수진동에 대한 수위의 영향)

  • Yoo, Gye-Hyoung;Kwon, Tae-Kyu;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.839-844
    • /
    • 2003
  • The effect of water level on the free vibration of a partially water-filled two rectangular plates structure was investigated by experimental modal analysis and finite element analysis using ANSYS computer program. Modal parameters of two rectangular plates coupled with water were obtained by means of experiment and the FEM solutions were compared with the experimental solutions to verify the finite element model. As a result, the comparison between the experiment and FEM results showed excellent agreement. The transverse vibration modes, in-phase and out-of-phase, were observed alternately in the fluid-coupled system. The effect of water level and water gap size on the fluid-coupled natural frequency were investigated. It was found that the natural frequency of the partially water-filled two rectangular plates are not proportional to the water level, but depend on mode number of plates.

  • PDF

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.

Approximate natural vibration analysis of rectangular plates with openings using assumed mode method

  • Cho, Dae Seung;Vladimir, Nikola;Choi, Tae Muk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.3
    • /
    • pp.478-491
    • /
    • 2013
  • Natural vibration analysis of plates with openings of different shape represents an important issue in naval architecture and ocean engineering applications. In this paper, a procedure for vibration analysis of plates with openings and arbitrary edge constraints is presented. It is based on the assumed mode method, where natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange's equations of motion. The presented solution represents an extension of a procedure for natural vibration analysis of rectangular plates without openings, which has been recently presented in the literature. The effect of an opening is taken into account in an intuitive way, i.e. by subtracting its energy from the total plate energy without opening. Illustrative numerical examples include dynamic analysis of rectangular plates with rectangular, elliptic, circular as well as oval openings with various plate thicknesses and different combinations of boundary conditions. The results are compared with those obtained by the finite element method (FEM) as well as those available in the relevant literature, and very good agreement is achieved.

Free Vibration Analysis of Rectangular Plates by the Combined Transfer Stiffness Coefficient Method and Finite Element Method (전달강성계수법과 유한요소법의 조합에 의한 사각평판의 자유진동해석)

  • 문덕홍;최명수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.353-358
    • /
    • 1998
  • In general, we have used the finite element method(FEM) to find natural frequencies of plates. In this method, however, it is necessary to use a large amount of computer memory and computation time because the FEM requires many degrees of freedom for finding natural frequencies of plates correctly. Therefore it was very difficult to analyze the free vibration of plates correctly on personal computer. For overcoming this disadvantage of the FEM, the authors have developed the finite element-transfer stiffness coefficient method(FE-TSCM) which is based on the concept of modeling techniques in the FEM and the transfer of the stiffness coefficient in the transfer stiffness coefficient method. In this paper, we formulate free vibration analysis algorithm of rectangular plates using the FE-TSCM. Some numerical examples of rectangular plates are proposed, and their results and computation times obtained by the FE-TSCM are compared with those by the FEM and the finite element-transfer matrix method in order to demonstrate the accuracy and efficiency of the FE-TSCM.

  • PDF