• Title/Summary/Keyword: Rectangular Patch

Search Result 213, Processing Time 0.066 seconds

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.772-772
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

A Study on Indoor Propagation Modeling using Patch Scattering Model (패치산란모델을 이용한 실내 전파모델링에 관한 연구)

  • 석우찬;김진웅;석재호;임재우;윤영중
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.722-733
    • /
    • 2001
  • In this paper, we proposed the image-based 3D ray-tracing indoor propagation model using patch scattering model which can calculate the scattering phenomenon of the indoor structures. A patch scattering model for modeling indoor structures defines a scattering phenomenon by using RCS(Radar Cross Section) about rectangular patch without complex calculation, for example generating image antennas about each indoor structures. RCS is simply defined as a ratio of scattering power to incident power, and we use bistatic PCS which is simplified numerically by Physical Optics. Also, a simple indoor compensation factor is defined as empirical constant from measured data instead of complex numerical expression because basic patch scattering model cannot include important multipath components, so we san use patch scattering model in indoor environment using indoor compensation factor.

  • PDF

Bandwidth Improved Hybrid Metamaterial Antenna Using Folded Parasitic Patch (접힌 기생 패치를 이용한 확장된 대역폭을 갖는 하이브리드 메타 물질 안테나)

  • Ko, Seung-Tae;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.583-591
    • /
    • 2012
  • In this paper, using a folded parasitic patch, a hybrid metamaterial antenna having the enhanced bandwidth is presented. To obtain a broad bandwidth of the antenna, a zeroth-order resonance(ZOR) mode of a mushroom antenna and a $TM_{010}$ mode of a conventional patch antenna are combined. By employing an etched rectangular hole and a folded parasitic patch in the conventional patch antenna, a resonance frequency of the $TM_{010}$ mode can be down-shifted toward that of the ZOR mode without changing the size of the antenna. Therefore, the proposed antenna has broad bandwidth which ranges from the ZOR mode to the $TM_{010}$ mode. As a result, a fractional bandwidth of the proposed antenna is measured as 12 % and a radiation efficiency is above 75 % in whole band.

High-Sensitivity Microstrip Patch Sensor Antenna for Detecting Concentration of Ethanol-Water Solution in Microliter Volume (마이크로리터 부피의 에탄올 수용액 농도 검출을 위한 고감도 마이크로스트립 패치 센서 안테나)

  • Junho Yeo;Jong-Ig Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.6
    • /
    • pp.510-515
    • /
    • 2022
  • In this paper, a microstrip patch sensor antenna (MPSA) for detecting the concentration of an ethanol-water solution in a microliter volume is proposed. A rectangular slot was added at the radiating edge of the patch to increase the sensitivity to the relative permittivity change. To improve a low input resistance caused by placing an ethanol-water solution, which is a polar liquid with high dielectric constant and high loss tangent, on the patch, a quarter-wave impedance transformer was added between the 50-ohm feedline and the patch, and the MPSA was fabricated on a 0.76 mm-thick RF-35 substrate. A cylindrical container was made of acryl, and 15 microliters of the ethanol-water solution was tested from 0% to 100% of ethanol concentration at 20% intervals. Experiment results show that the resonant frequency increased from 1.947 GHz to 2.509 GHz when the ethanol concentration of the ethanol-water solution was increased from 0% to 100%, demonstrating the performance as a concentration detecting sensor.

Folded Monopole Antenna Using the Rectangular Patch for Multi-band Wireless USB Dongle Applications (다중대역 무선 USB 동글 장치를 위한 사각 패치를 이용한 폴디드 모노폴 안테나)

  • Lee, Yun Min;Lee, Jae Choon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.2
    • /
    • pp.11-15
    • /
    • 2013
  • We in order to use WLAN communication device planned wireless USB dongle internal antenna of 2.4 GHz/5.8 GHz band. So it uses square patch dual-wideband and quality is satisfactory and it designed print folded monopole antenna of the shape which is simple. The thickness of the antenna was fed by a $50{\Omega}$ coaxial cable feeding 1mm dielectric constant 4.4 FR4 substrate was used. The overall size of the antenna is $20mm{\times}50mm$. So the internal antenna is suitable. Measurement results of the fabricated antenna, the return loss of more than 10 dB in the two bands could be obtained. Radiation pattern has a maximum gain of 3.75 dBi value.

Design of Broadband Compact Microstrip Antenna with U slotted Ground Plane Using Genetic Algorithm (유전자 알고리즘을 이용한 접지면 U 슬롯 구조의 광대역 소형 마이크로스트립 안테나 설계)

  • Lim, Hyun-Jun;Yoon, Hyun-Boo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.432-436
    • /
    • 2003
  • This paper presents a broadband microstrip antenna design with four U slots on the ground plane by using of genetic algorithm. FDTD method is used as fitness function for antenna analysis, and length of rectangular patch, length of ground plane slot, distance from center point to feed point is used as optimization parameter for maximum bandwidth and minimum size. The measurement result of implemented antenna present bandwidth of 15.63 % and peak gain of 3.61 dBi in the 2.445 GHz, and antenna has a reduced patch size of 54.8 % compare with normal microstrip antenna.

  • PDF

Upward Continuation of Potential Field on Spherical Patch Area (구면부분지역에서의 퍼텐셜마당의 상향연속)

  • Na, Sung-Ho;Chung, Tae Woong;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.245-248
    • /
    • 2012
  • Two dimensional Fourier transform can be used for the upward continuation of gravity or magnetic field data acquired at given altitude over a rectangular area. Earth's curvature is often neglected in most potential field continuations, however, it should be considered over several hundred kilometer field area. In this study, we developed a new method retaining terms of Earth's curvature to better perform the continuation of potential field on spherical patch area.

A study of characteristics of X-band microstrip patch antenna affected b permittivity and electrical thickness of the substrate (기판의 유전율 및 전기적 두께가 X-벤드용 마이크로스트립 패치 안테나의 특성에 미치는 영향에 관한 연구)

  • 박성교;김준현;박종배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.65-81
    • /
    • 1996
  • In this study forty-five X-bnd rectangular microstrip patch antennas fed by microstrip line using ${\lambda}$/4 transformer were fabricated on teflon substrates with low high permittivities and varous thickness (substrate thickness : 0.6 ~ 2.4 mm, permittivities : 2.15 ~ 10.0), and effects of permittivity and electrical thickness on antenna characteristics were studied with measured return loss (1/S$_{11}$) and resonant frequencies. When substrate electrical thickness was greater than 0.060 ${\lambda}_{0}$return loss was very good and genrally more than 20 dB, but resonance characteristics was somewhat unstable. The more than 0.088 ${\lambda}_{0}$ the thickness was, the more unstable it was. As a result, in the rest range except 12, 13 GHz we had very good mesured return loss iwth greater than 20 dB, and in the range 7 to 9 GHz resonant frequencies were within $\pm$2 % error, on ${\epsilon}_{r}$=5.0, height = 2.4 mm substrate.

  • PDF

An Improvement of Closed-Form Formula for Mutual Impedance Computation

  • Son, Trinh-Van;Hwang, Keum Cheol;Park, Joon-Young;Kim, Seon-Joo;Shin, Jae-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.4
    • /
    • pp.240-244
    • /
    • 2013
  • In this paper, we present an improvement of a closed-form formula for mutual impedance computation. Depending on the center-to-center spacing between two rectangular microstrip patch antennas, the mutual impedance formula is separated into two parts. The formula based on synthetic asymptote and variable separation is utilized for spacings of more than 0.5 ${\lambda}_0$. When the spacing is less than 0.5 ${\lambda}_0$, an approximate formula is proposed to improve the computation for closely spaced elements. Simulation results are compared to computational results of mutual impedances and mutual coupling coefficients as functions of normalized center-to-center spacing in both E- and H-plane coupling configurations. A good agreement between simulation and computation is achieved.