• Title/Summary/Keyword: Rectangular Aperture

Search Result 59, Processing Time 0.029 seconds

Design for Rectangular Waveguide Slot Antenna using FDTD Method (FDTD법을 이용한 구형도파관의 Slot 안테나 설계)

  • 고지원;김광욱;김동철;임학규;민경식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.147-151
    • /
    • 2000
  • This paper presents an analysis of a slot on the broad wall of a rectangular waveguide using the 3D FDTD method. In order to reduce the reflection loss, Mur's 2nd absorbing boundary condition is used. To realize the optimum design by FDTD, the effects of time step, excitation aperture size, analysis region and excitation position in model are derived. The analysis results are compared with the experimental results and they show a good agreement with each other.

  • PDF

Analysis of Scattering Matrix for the Open-ended Rectangular Waveguide with Infinite Flange (무한한 플랜지가 장착된 개방형 직사각형 도파관 구조에 대한 산란 행렬 해석)

  • Ko, Ji-Whan;Cho, Young-Ki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.407-413
    • /
    • 2008
  • In this paper, scattering matrix for the open ended rectangular waveguide with infinite flange is derived. To validate the scattering matrix approach, load admittance $Y_{L,10}$ obtained from the present scattering matrix method is compared with the results of the previous work. The convergence for scattering matrix solution versus TE and TM mode numbers is investigated. Also far field power pattern radiated from the aperture of the waveguide is given.

Calculation of Radiation Patterns on Phased Arry Antenna of Slant Grid (경사진 배열 구조를 갖는 위상배열 안테나의 복사패턴 계산)

  • 하헌태;김세윤
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.1
    • /
    • pp.1-7
    • /
    • 1993
  • The radiation characteristics of a phased array antenna consisted of rectangular waveguides with a slant grid are investigated here. In particular, the effects of the slant angle on the radiation patterns are calculated by solving numerically the integral equation to the electric field over the waveguide aperture in view of the modal analysis. And it is found that the blindness on the radiation pattern can be moved by inserting a dielectric plug or sheath properly.

  • PDF

Lowpass Filter Design for eliminate the harmonic signals using Photonic bandgap structure (PBG구조를 이용한 저역통과 필티의 설계)

  • 김장권;조영빈
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.383-386
    • /
    • 2002
  • The goal of this study is to realize the PBG lowpass filter using novel PBG structure modification both upper layer and ground layer. It has been designed three aperture slots of ground layer for PBG structure which the center slot shape of ground is two type, rectangular and dumbbell. This PBG LPF llas the character of the broader stopband and smaller size than typical LPF. The measurement results have matched the simulated ones. It has the cutoff frequency of each 4.4650Hz and 3.520Hz and at least -2OdB of the signal suppression at the stopband.

  • PDF

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure (질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서)

  • Yi, Hao;Kim, Hyeon-Ho;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

A Hybrid Reader Antenna for Near- and Far-Field RFID in UHF Band (근거리장 및 원거리장용 하이브리드 RFID 리더 안테나)

  • Lee, Chu-Yong;Han, Wone-Keun;Park, Ik-Mo;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.174-182
    • /
    • 2009
  • In this paper, we propose a novel hybrid reader antenna using a triangular and rectangular sub-patch for near- and far-field RFID reader in UHF band. The antenna operates at 912 MHz, and the low-cost mass-production is available, since the antenna can be built by printing on a FR-4 substrate. The triangular patch is designed to produce a circularly polarized radiation along the bore-sight direction and the rectangular sub-patch is designed to generate a strong magnetic field over the antenna aperture. The measurement shows Hz field greater than -25 dBA/m(3 cm above the antenna aperture), and exhibits circularly polarized radiation(AR<3 dB) with a radiation gain of 6 dBi.

Simple Miniaturization Method of a Microstrip Patch Antenna (마이크로스트립 패치 안테나의 효율적 소형화 기법)

  • 이병제;이호준;강기조;김남영;이종철;김종환
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.920-928
    • /
    • 2000
  • In this paper, using newly proposed size reduction technique, the aperture coupled microstrip patch antenna for a repeater system in a mobile communication cellular band (824~849 MHz) is developed with a wide bandwidth, small size, light weight, and low cost. The resonant frequency of microstrip antennas is related to the electric field distribution of the radiating patch. The field strength of $TM_{01}$ mode of a rectangular patch antenna is strongest at each of the extremities of the radiating patch, but negligible at center. Therefore, the size of a patch antenna can be effectively minimized by inserting the narrow rectangular dielectric into just under the edges of the resonant Patch. This Paper also proposes the bandwidth improvement technique by using under-coupling technique with a tuning stub. The VSWR is less than 1.5 : 1 for the whole cellular band. The simulation tool was HFSS, Agilent Technologies, Inc.

  • PDF

The excimer laser ablation of PET for micro-mold insert - The control of cross sectional shape using Fourier optics - (마이크로 금형 제작을 위한 PET의 엑시머 레이저 어블레이션 - 퓨리에 광학을 이용한 가공 단면 형상의 제어 -)

  • Shin, Dong-Sik;Lee, Je-Hoon;Seo, Jung;Kim, Do-Hoon
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.19-28
    • /
    • 2003
  • The manufacturing process for the microfluidic device can include sequential steps such as master fabrication, electroforming, and injection molding. The laser ablation, using masks, has been applied to the fabrication of channels in microfluidic devices. In this research, an excimer laser was used to engrave microscopic channels on the surface of PET (polyethylene terephthalate), which shows a high absorption ratio for an excimer laser beam with a wavelength of 248 m. When 50-${\mu}{\textrm}{m}$-wide rectangular microscopic channels are ablated with a 500 ${\times}$ 500 ${\mu}{\textrm}{m}$ square mask at a magnification ratio of 1/10, ditch-shaped defects were found in both corners. The measurement of laser beam intensity showed that a coherent image in the PET target caused such defects. Analysis based on the Fourier diffraction theory enabled the prediction of the coherent shape at the image surface as well as the diffraction beam shape between the mask and the image surface. It also showed that the diameter of the aperture had a dominant effect. The application of aperture with a diameter of less than 3 mm helped to eliminate such defects in the ablated rectangular microscopic channels on PET without such ditch-shaped defects.

  • PDF

Characteristics of a Microstrip Circularly-Polarized Aperture-Patch $8\times8$ Array Antenna (마이크로스트립 원형 편파 개구면-패치 $8\times8$ 배열 안테나의 특성)

  • 김인광;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1022-1032
    • /
    • 1999
  • The radiation characteristics of a microstrip circularly-polarized aperture-patch $8\times8$ array antenna are investigated at X-band. The radiator consists of a truncated square aperture on the ground plane with an inclined rectangular patch inside, and it is coupled by a microstrip line on the opposite side of the ground. The element spacing of the array was chosen as $0.8\lambda_0$so as to minimize the mutual coupling and maximize the gain. A corporate feed network was employed to distribute the power to each element through four Wilkinson and two T-junction dividers. Measurement results for the $8\times8$ array at 10 GHz showed a directivity of 26.3 dBi, a gain of 22.2 dBi, an axial ratio of 2.97 dB, and a side lobe level of -12.7dB. It was observed that when the array size increases, the directivity increases while the efficiency decreases.

  • PDF

Design of the Non-Resonant SWG Antenna with Double Slots in the Narrow Wall of Rectangular Waveguide (구형 도파관의 협벽에 이중 슬롯을 가진 비공진형 슬롯 도파관 안테나의 설계)

  • Hur, Moon-Man
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.106-113
    • /
    • 2011
  • In this paper, the non-resonant SWG(Slotted Waveguide) antenna with double slots in narrow wall of rectangular waveguide is designed. Because energy radiated from each slot depends upon inclination angle of slot of the designed antenna, inclination angle of each slot is controlled to satisfy the amplitude distribution for required sidelobe level. Instead of the conventional extraction method of slot conductance, this amplitude distribution is made by the proposed method, which employs far-field radiation pattern calculated by Fourier transform of aperture field distribution on slot. The non-resonant double SWG antenna is designed by the proposed method and is manufactured. The antenna performances are measured and compared with the simulated results.