• Title/Summary/Keyword: Rectangle pattern matching

Search Result 3, Processing Time 0.017 seconds

Real-time Speed Limit Traffic Sign Detection System for Robust Automotive Environments

  • Hoang, Anh-Tuan;Koide, Tetsushi;Yamamoto, Masaharu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.237-250
    • /
    • 2015
  • This paper describes a hardware-oriented algorithm and its conceptual implementation in a real-time speed limit traffic sign detection system on an automotive-oriented field-programmable gate array (FPGA). It solves the training and color dependence problems found in other research, which saw reduced recognition accuracy under unlearned conditions when color has changed. The algorithm is applicable to various platforms, such as color or grayscale cameras, high-resolution (4K) or low-resolution (VGA) cameras, and high-end or low-end FPGAs. It is also robust under various conditions, such as daytime, night time, and on rainy nights, and is adaptable to various countries' speed limit traffic sign systems. The speed limit traffic sign candidates on each grayscale video frame are detected through two simple computational stages using global luminosity and local pixel direction. Pipeline implementation using results-sharing on overlap, application of a RAM-based shift register, and optimization of scan window sizes results in a small but high-performance implementation. The proposed system matches the processing speed requirement for a 60 fps system. The speed limit traffic sign recognition system achieves better than 98% accuracy in detection and recognition, even under difficult conditions such as rainy nights, and is implementable on the low-end, low-cost Xilinx Zynq automotive Z7020 FPGA.

Circular Dual Mode Horn Antenna(CDMHA) with Modified Aperture to Improve E/H-Plane Radiation Pattern Symmetry (E/H 평면 방사 패턴 대칭성 향상을 위해 개구면이 변형된 원형 이중 모드 혼 안테나)

  • Kim, Jae Sik;Yoon, Ji Hwan;Yoon, Young Joong;Lee, Woo-Sang;So, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.502-507
    • /
    • 2013
  • In this paper, a circular dual mode horn with modified aperture is proposed to improve a E/H-plane radiation pattern symmetry of a conventional oversized circular dual mode horn. The proposed antenna consists of a feeding section, a mode generation section and a phase matching section which has aperture shape transition from circle to ellipse or rectangle to improve a E/H-plane radiation pattern symmetry. To compare the performances between the proposed antenna and the convenional circular dual mode horn, the conventional circular dual mode horn and the proposed circular dual mode horn with rectangular aperture are fabricated and researched at 15 GHz. The measured results show that the conventional circular dual mode horn has 3.394 dB difference while the proposed antenna has only 0.539 dB difference between E and H-plane radiation patterns within the -11 dB beamwidth($53^{\circ}$) which is required beamwidth of the feed horn for the maximum aperture efficiency where f/d ratio of reflector antenna is 1.

Development of a Data Reduction Algorithm for Optical Wide Field Patrol (OWL) II: Improving Measurement of Lengths of Detected Streaks

  • Park, Sun-Youp;Choi, Jin;Roh, Dong-Goo;Park, Maru;Jo, Jung Hyun;Yim, Hong-Suh;Park, Young-Sik;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Choi, Young-Jun;Cho, Sungki;Choi, Eun-Jung
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.221-227
    • /
    • 2016
  • As described in the previous paper (Park et al. 2013), the detector subsystem of optical wide-field patrol (OWL) provides many observational data points of a single artificial satellite or space debris in the form of small streaks, using a chopper system and a time tagger. The position and the corresponding time data are matched assuming that the length of a streak on the CCD frame is proportional to the time duration of the exposure during which the chopper blades do not obscure the CCD window. In the previous study, however, the length was measured using the diagonal of the rectangle of the image area containing the streak; the results were quite ambiguous and inaccurate, allowing possible matching error of positions and time data. Furthermore, because only one (position, time) data point is created from one streak, the efficiency of the observation decreases. To define the length of a streak correctly, it is important to locate the endpoints of a streak. In this paper, a method using a differential convolution mask pattern is tested. This method can be used to obtain the positions where the pixel values are changed sharply. These endpoints can be regarded as directly detected positional data, and the number of data points is doubled by this result.