• Title/Summary/Keyword: Recrystallization behavior

Search Result 147, Processing Time 0.029 seconds

Prediction of Recrystallization Behavior during Thick-Plate Rolling (후판압연에서의 재결정거동 예측)

  • 이동근;박종진
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.320-326
    • /
    • 1999
  • In the present investigation, recrystallization occurring during hot rolling of thick steel plate was predicted. The thermo-mechanical history of a material point was traced by the finite element method and the recrystallization was predicted by the Sellars equations. The investigation was performed for 4 different cases; two different pass schedules in conventional rolling and two different pass schedules in controller rolling. Variations of temperature, strain, strain rate and grain size were compared with each other. It was found out that the difference of grain size through thickness was more distinctive in the cases of controller rolling.

  • PDF

Quantitative Analysis of Hot Forming with Stress Compensation to Dynamic Recrystallization (고온성형중 동적재결정에 의한 하중감소의 정략적 해석)

  • 장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.203-206
    • /
    • 1999
  • The shift of flow behavior due to dynamic recrystallization during hot forming process is investigated, A series of load relaxation and compression tests has been conducted at various temperatures Constitutive relations and recrystallization behaviors were formulated from the mechanical test results, The consideration of dynamic recrystallization during a specific forming process was implemented to commercial FEM package by conditioned remeshing and remapping of state variables. Improvement of Load-Stroke prediction was validated by comparison with experimental results.

  • PDF

Prediction of the Behavior of dynamic Recrystallization in Inconel 718 during Hot Forging using Finite Element Method (유한요소법을 이용한 Inconel 718의 열간단조공정시 동적재결정거동 예측)

  • Choi, Min-Shik;Kang, Beom-Soo;Yum, Jong-Taek;Park, Noh-Kwang
    • Transactions of Materials Processing
    • /
    • v.7 no.3
    • /
    • pp.197-206
    • /
    • 1998
  • This paper presents the prediction of dynamic recrystallization behavior during hot forging of Inconel 718. Another experiment of pancake forging was also carried out to examine the recrystallization ration dynamically recrystallizaed grain size, and grain growth in the forging. In experiments cylindrical billets were forged by two operations with variations of forging temperature, reduction ration of deformation. and preheating process at each forging step. Also the finite element program, developed here for the prediction using the metallurgical models was used for the analysis of to Inconel 718 upsetting and the results were compared with experimental ones.

  • PDF

Implication of Dynamic Materials and Softening Models to the FEM Analysis of SAF2507 Hot Forging (동적재료모델 및 연화모델을 도입한 SAF 2507의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.195-198
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Applying the dynamic materials and proposed by Prasad et al., it was possible to determine the characteristics of deformation behavior effectively at a given condition of deformation. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. Flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating was found to improve significantly the FEA solutions in predicting the forming load and the distribution of recrystallized volume fraction after forging.

  • PDF

Recrystallization Behavior of 304 Stainless Steel during Hot Multistage Deformation (304 스테인레스강의 고온다단변형시 재결정 거동)

  • 조상현;김성일;유연철;노광섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.77-80
    • /
    • 1997
  • The torsion tests in the range of 900~110$0^{\circ}C$, 5.0$\times$10-2~5.0$\times$100/sec were performed to study the recry stallization behavior of 304 stainless steel in the high temperature multistage deformation. The no-recrystallization temperature(Tnr) and fractional softening(FS) were determined by the change of flow curves. The inflection points of stress slope were moved to lower temperature area as the strain rate and the interrupt time were increased. From the multipass flow curve, the intersection between pass stress and FS curve was corresponding to the pass which the FS dropped abruptly and it was shown that the recrystallization area could be determined by the FS measurement in multipass deformation.

  • PDF

Application of Dynamic Materials and Softening Models to the FEM Analysis of Hot Forging in SAF2507 Steel (동적재료모델 및 연화모델을 응용한 SAF 2507 강의 열간단조 유한요소해석)

  • 방원규;정재영;장영원
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.308-313
    • /
    • 2003
  • High temperature deformation and softening behavior of SAF 2507 super duplex stainless steel (SDSS) has been investigated in connection with an FEM analysis of hot forging process. Flow curves at various strain rates and temperatures were determined first from compression tests, and the kinetics of dynamic recrystallization were also formulated through the analysis of load relaxation test results. Using the dynamic materials theory proposed by Prasad, the deformation behavior was effectively determined for various conditions. Constitutive relations and recrystallization kinetics formulated from the test results were then implemented in a commercial FEM code. The forming load as well as the distribution of recrystallized volume fraction after forging was successfully predicted by means of the flow stress compensation formulated upon the volume fraction of recrystallization and adiabatic heating.

Microstructural Evolution and Recrystallization Behavior Traced by Electron Channeling Contrast Imaging

  • Oh, Jin-Su;Yang, Cheol-Woong
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.130-131
    • /
    • 2018
  • Electron channeling contrast imaging (ECCI) is one of the imaging techniques in scanning electron microscopy based on a variation in electron backscattering yield depending on the direction of the primary electron beam with respect to the crystal lattice. The ECCI provides not only observation of the distribution of individual grains and grain boundaries but also identification of the defects such as dislocations, twins, and stacking faults. The ECCI at the interface between recrystallized and deformed region of shot peening treated nickel clearly demonstrates the microstructural evolution during the recrystallization including original grain boundaries, and thus can provide better insight into the recrystallization behavior.

Effect of Nb Contents and Processing Parameters on Dynamic Recrystallization Behavior of 0.15C-0.2Si-0.5Mn Low-Carbon Steels (0.15C-0.2Si-0.5Mn 저탄소강의 동적 재결정 거동에 미치는 Nb 첨가와 공정 변수의 영향)

  • Lee, Sang-In;Seo, Ha-Neul;Lee, Jae-Seung;Hwang, Byoungchul
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.5
    • /
    • pp.209-215
    • /
    • 2016
  • In this study, the effect of Nb contents and processing parameters on dynamic recrystallization behaviour of 0.15C-0.2Si-0.5Mn low-carbon steels was investigated. Three kinds of steel specimens with different Nb contents were fabricated and then high-temperature compressive deformation test was conducted by varying reheating temperature (RT), deformation temperature (DT), and strain rate (SR). The Nb2 and Nb4 specimens containing Nb had smaller prior austenite grain size than the Nb0 specimens, presumably due to pinning effect by the formation of carbides and carbonitrides precipitates at austenite grain boundaries. The high-temperature compressive deformation test results showed that dynamic recrystallization behavior was suppressed in the specimens containing Nb as the strain rate increased and deformation temperature decreased because of pinning effect by precipitates, grain boundary dragging effects by solute atoms, although the compressive stress increased with increasing strain rate and decreasing deformation temperature.

A Study on the Recrystallization Behavior of Zr-xSn Binary Alloys (Zr-xSn 이원계 합금의 재결정에 관한 연구)

  • Lee, Myeong-Ho;Gu, Jae-Song;Jeong, Yong-Hwan;Jeong, Yeon-Ho
    • Korean Journal of Materials Research
    • /
    • v.9 no.11
    • /
    • pp.1123-1128
    • /
    • 1999
  • To investigate the effect of Sn on the recrystallization of Zr-based alloys. Zr-xSn (x=0.5, 0.8, 1.5, 2.0wt.%) alloys were manufactured to be the sheets through the defined manufacturing procedure. The specimens were annealed at $300^{\circ}C$ to $800^{\circ}C$ for 1 hour. The hardness, microstructure and precipitate of the alloys with the annealing temperature were investigated by using micro- knoop hardness tester, optical microscope(O/M) and transmission electron microscope(TEM), respectively. The cold-worked Zr-xSn alloys showed the typical behavior of the recovery. recrystallization, and grain growth. The recrystallization of Zr-xSn alloys occurred between $500^{\circ}C$ and $700^{\circ}C$. As the Sn content increased. the recrystallization temperature of the cold-worked alloys increased but their grain sizes after recrystallization decreased. It is suggested that the recrystallization of the cold- worked Zr alloys be occurred by the subgrain coalescence and growth mechanism.

  • PDF

A Physically Based Dynamic Recrystallization Model for Predicting High Temperature Flow Stress (열간 유동응력 예측을 위한 물리식 기반 동적 재결정 모델)

  • Lee, H.W.;Kang, S.H.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.450-455
    • /
    • 2013
  • In the current study, a new dynamic recrystallization model for predicting high temperature flow stress is developed based on a physical model and the mean field theory. In the model, the grain aggregate is assumed as a representative volume element to describe dynamic recrystallization. The flow stress and microstructure during dynamic recrystallization were calculated using three sub-models for work hardening, for nucleation and for growth. In the case of work hardening, a single parameter dislocation density model was used to calculate change of dislocation density and stress in the grains. For modeling nucleation, the nucleation criterion developed was based on the grain boundary bulge mechanism and a constant nucleation rate was assumed. Conventional rate theory was used for describing growth. The flow stress behavior of pure copper was investigated using the model and compared with experimental findings. Simulated results by cellular automata were used for validating the model.