• Title/Summary/Keyword: Recrystallization Texture

Search Result 92, Processing Time 0.036 seconds

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

Effect of Cold Rolling and Annealing Conditions on the Microstructure and Texture Evolution (430 스테인리스강의 미세조직 및 집합조직 형성에 미치는 냉간압연 및 소둔조건의 영향)

  • 김광육
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.202-205
    • /
    • 2000
  • The effect of two step cold rolling and intermediate annealing conditions on the microstructure and texture evolution in type 430 stainless steel has been investigated tin order to improve ridging characteristic and deep drawability. The rolling and recrystallization textures were examined by orientation distributionfunction(ODF) and electron backscattered diffraction(EBSD). The observation showed that the intensity of ${\gamma}$-fiber was increased with two-step cold rolling process and so ridging characteristic and deep drawability were considerably improved. The relation between these properties an texture evolution has been discussed.

  • PDF

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Texture Development of Cold Rolled and T-6 Treated 7X1X Al-alloy with 0.1% Sc (0.1% Sc이 첨가된 7X1X Al-합금의 압연과 T-6열처리에 따른 집합조직의 발달)

  • Jea, C.W.;Jin, S.J.;Chung, D.S.;Lim, S.T.;Park, N.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.2
    • /
    • pp.101-105
    • /
    • 2004
  • After extrusion, cold rolling and T-6 treatment, texture development of 7x1x Al-alloy with 0.1% Sc is studied. During extrusion the very strong <111>+weak <100> fiber texture is developed, which is Influenced on the formation of rolling texture. The texture after 80% cold rolling can be described by strong{112}<111>(Cu)+{123}<634>(S) component in the cross section of the extruded rod, the strong -fiber+weak{110}<001>(Goss) components in the longitudinal section, and the strong {110}<112>(Bs)+weak{001}<100>(Cube) components in the transverse section. The components of rolling texture are remained after T-6 treatment, but the maximum density of ODF is higher. The calculated mean r-values and the planar anisotropy are relatively high, which are dependent on the texture. After T-6 treatment, recrystallized equiaxed grains with average grain size of $1{\sim}2{\mu}m$ are obtained.

Texture and Microstructure in AA3004 after Continuous Confined Strip Shearing (CCSS 변형된 AA 3004 판재의 집합조직과 미세조직)

  • 김훈동;정영훈;황병복;최호준;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.181-183
    • /
    • 2002
  • A new deformation process termed "continuouis confined sup shearing" (CCSS) has been developed for shear deformation of metallic sheets. The tools of CCSS were designed to provide a constant shear deformation of the order of 0.5 per pass while preserving the original sheet shape. In order to clarify the evolution of texture and microstructure during CCSS, strips of the aluminum alloy AA3004 were deformed by CCSS in up to three passes. FEM results indicated that CCSS provides a quite uniform shear deformation at thickness layers close to the strip center, although the deformation is not homogeneous in the die channel, in particular at the surface layers. The rolling texture of the initial sheet decreased during CCSS, and preferred orientations along two fibers developed. However, with an increasing number of CCSS passes the deformation texture did not develop futher. The evolution of annealing textures depended on the number of CCSS passes. A strong {112}<110> component in the deformation texture led to the formation of a strong {111}<112) orientation in the annealing texture. Observations by TEM and EBSD revealed the formation of very fine grains of ∼1.0$\mu\textrm{m}$ after CCSS.

  • PDF

Textures Evolution of Rolled AA5182 Alloy Sheets after Annealing (알루미늄 5182 압연 판재의 어닐링 집합조직)

  • Kim Kee Joo;Shin Kwang Seon;Jeong Hyo-Tae;Paik Young-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.128-134
    • /
    • 2005
  • In order to fabricate the aluminum alloys with good drawability, the textures evolution of the AA5182 sheets after rolling and annealing was studied. The measurement of the deformation textures was carried out for the sheets which were cold rolled with high reduction ratio by using the symmetric roll. In addition, the change of the recrystallization texture was investigated after heat-treatments of the rolled sheets with various heat treatment conditions. Rolling without lubrication and subsequent annealing led to the formation of favorable $rot-C_{ND}\;\{001\}<110>\;and\;{\gamma}-fiber ND//<111>$ textures in AA5182 sheets. From the results, the ${\gamma}$-fiber ND//<111> component well evolved during rolling at highest reduction ratio (over $90\%$, l/d parameter of 6.77). Among shear deformation textures, the ${\gamma}$-fiber ND//<111> was not rotated in holding time of $180\~7,200$ seconds at $350^{\circ}C$. The Monte-Carlo technique was used and could be representatively simulated these textures evolution during recrystallization.

The Effect of Mo and Cr addition on the Deep Drawability of Dual Phase Steel Sheets (이상조직강판의 성형특성에 미치는 Mo와 Cr첨가의 영향)

  • Han, Seong Ho;Ahn, Yeon Sang;Chin, Kwang Geun;Kim, In Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.713-724
    • /
    • 2008
  • The need to lower the weights of automotive vehicle and to improve the safety of cars has resulted in the development of high strength steels such as TRIP(Transformation Induced Plasticity) and DP (Dual Phase) steel. It is well known that the higher strength of steel shows the poorer press formability. Among the high strength steels, DP steel shows several good characteristics such as low yield ratio, high initial n value, high elongation, high bake hardenability and anti-aging property. However, there's a certain limit in application of DP steels to the automotive panel parts because their poor deep drawbility caused by martensite. In this study, the effect of alloying elements on the deep drawability and recrystallization texture in TS 440MPa grade DP steel with 0.015~0.02% carbon has been investigated on the base of SEM, TEM, XRD and EBSD analysis.

Texture and Mechanical Properties of Ni-W Alloy Tapes Fabricated from Powder Mother Billets (분말 모합금 빌렛으로부터 제조된 Ni-W 합금테이프의 기계적 성질과 집합도)

  • Kim, Min-Woo;Jun, Byung-Hyuk;Ji, Bong-Ki;Jung, Kyu-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.13-18
    • /
    • 2007
  • The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.

Mechanical Properties and Texture after Thermomechanical Treatment of Al/Al2O3 Composite Fabricated by Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al/Al2O3 복합재료의 가공열처리후의 기계적 성질 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.235-240
    • /
    • 2003
  • The $Al/Al_2O_3$ composites fabricated by powder in sheath rolling method were cold-rolled by 50% reduction and annealed for 1.8 ks at various temperatures ranging from 200 to 50$0^{\circ}C$, for improvement of the mechanical properties. The mechanical properties and texture of the composites after rolling and annealing were investigated. The tensile strength of the composites increased significantly due to work hardening after cold rolling, however it decreased due to restoration after annealing. The strength of the composites was improved by thermo mechanical treatment. On the other hand, the texture evolution with annealing temperatures wa,i different between the unreinforced material and the composites. The unreinforced material showed a deformation (rolling) texture of which main component is {112}<111> at annealing temperatures up to 30$0^{\circ}C$. However, the composites have already exhibited a recrystallization texture of which main component is {001}<100> after annealing at 20$0^{\circ}C$. This proves that the critical temperature for recrystailization is lower in the composites than in the unreinforced ones.

Effects of Rolling Temperature on the Development of Microstructure, Texture, and Mechanical Properties in AZ31 Magnesium Alloy (AZ31 마그네슘 합금에서 압연온도가 미세조직과 집합조직 및 기계적 특성에 미치는 영향)

  • Park, No-Jin;Han, Sang-Ho
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • Wrought magnesium alloys show a low formability at room temperature, and a remarkable anisotropy of mechanical properties make it difficult to use them in a deformation process in industry. The microstructure and crystallographic texture of metals are developed during thermo-mechanical processes, and they are significant to the understanding of the mechanical properties of metals. This work studies the microstructure, texture development and tensile properties of the extruded AZ31 Mg alloy after rolling at 100 and $300^{\circ}C$. After 40% rolling at $100^{\circ}C$, many deformed twins were observed and a relatively weak texture developed. The basal poles were split and rotated towards the rolling direction about $20^{\circ}$. During 60% rolling at $300^{\circ}C$, the dynamic recrystallization (DRX) took place and developed a strong <0001>II ND fiber texture, which influenced the poor formability at room temperature.