• Title/Summary/Keyword: Recrystallization Layer

Search Result 43, Processing Time 0.02 seconds

The Thickness of Recrystallization Layer during Aluminum Extrusion Process (알루미늄 압출공정변수에 따른 재결정층 두께 변화)

  • Oh K. H.;Min Y. S.;Park S. W.;Jang G. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.266-269
    • /
    • 2005
  • The effect of exit temperature on the thickness of recrystallization layer during Al extrusion process was investigated. The recrystallization layer of an extruded Al alloy is an important feature of the product in a wide range of applications, particularly those within the automotive industry. The thicker recrystallized layer in the Al alloys can give rise to a number of problems including reduced fatigue resistance and orange peel during cold forming. But the interaction of extrusion process variables with the thickness of recrystallization layer is poorly understood, and there is limited information available regarding the role of the main hot extrusion variables. Using the 3650 US ton extrusion press, this paper describes the effect of the main process variables such as billet temperature, ram speed, and exit temperature on the thickness of recrystallization layer for the A6XXX Al alloy.

  • PDF

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

CO2 Laser Assisted Recrystallization of Polysilicon Island (CO2 레이저 열처리에 의한 다결정 실리콘 Island의 재결정화)

  • Oh, Min-Rok;An, Chul
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.536-538
    • /
    • 1987
  • The recrystallization of polysilicon layer deposited on Si was attemped by means of C02 laser annealing. The polysilicon layer was defined in small island patterns ($50{\mu}m{\times}200{\mu}m$) by means of photolithography prior to the annealings. After the annealing an increase of grain size up to about 50um was obtained.

  • PDF

A Study on Plastic Strain in Machined Surface (기계 가공면의 소성스트레인에 관한 연구)

  • Kim, Tae-Young;So, Youl-Young;Shin, Hyung-Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.47-56
    • /
    • 1993
  • Typical plastic strains in the machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. There is an alternative way to determine the residual strain in plastically deformed materials by measuring the grain size after a subsequent recrystallization precess. Although, this technique has been successfully applied by several researchers to find the plastic zone around notches and cracks in various materials and welding beads, few works have been reported using the recrystallization method to determine the residual strains in machined surface. Therefore, the purpose of this investigation is to explore the effectiveness of the recrystallization technique in machining applications and in particular, to find the effect of cutting parameters, i.e., depth of cut, rake angle, on the plastic strains. As the result, the recrystallization technique was succesfully applid to determine the plastic strain in machined surface.

  • PDF

The Recrystallization of Polysilicon in SOI by $Co_2$ Laser Annealing ($Co_2$ 레이저 열처리에 의한 SOI 구조에서의 다결정 실리콘의 재결정화)

  • Oh, Min-Rok;An, Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.6
    • /
    • pp.975-979
    • /
    • 1987
  • The recrystallization of polysilicon layer deposited on SiO2 was attempted by means of CO2 laser annealing in this paper. SiO2 layer of 13000\ulcornerthick and polysilicon layer of 6000\ulcornerthick were successively deposited on (100) Si wafer by thermal oxidation and LPCVD, respectively. Prior to the annealings the polysilicon layer was defined in small island patterns by means of photolithography. After the annealing an increase in grain size from 1000\ulcornerto 2-10 =\ulcorner was observed by SEM.

  • PDF

The Effect of Initial Textures on Ridging in STS 430 Steel (STS 430 강판의 리징 현상에 미치는 초기집합조직의 영향)

  • Lee J. H.;Lee C. H.;Park S. H.;Huh Y. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.225-227
    • /
    • 2004
  • Recrystallization textures of ferritic stainless steel sheets of STS 430 were varied by means of different cold rolling procedures. The conventional normal rolling led to the evolution of strong through-thickness texture gradients in the final recrystallization texture, while the cross-rolling led to a decrease in texture gradients. Micro-texture observation by EBSD revealed that the formation of band-like orientation colonies formed close to the center layer was responsible for ridging. Modification of the recrystallization texture and microstructure by cross-rolling destroyed band-like orientation colonies and consequently reduced the ridging height.

  • PDF

Formation of Shear Texture and Microstructure in AA3004 Sheet (AA3004에서 전단변형 미세조직 및 집합조직의 형성)

  • 이강노;김종국;김훈동;황병복;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.184-186
    • /
    • 2002
  • The evolution of texture and microstructure during warm rolling and subsequent annealing in aluminium 3004 alloy sheet was investigated by X-ray texture measurements and microstructure observations. Warm rolling at 250$^{\circ}C$ led to the development of strong through thickness texture gradients with shear textures at the surface layer and a regular rolling texture in the center of the sheets. FEM simulations indicated that these texture gradients are caused by pronounced strain gradients throughout the sheet thickness. Upon recrystallization annealing, in the sheet center the characteristic cube-recrystallization texture developed, while in the surface layers with a pronounced shear texture continuous recrystallization took place which led to the formation of a very fine grained microstructure. It is concluded that the very complex strain history in the near-surface layers together with the resulting high work-hardening rate gave rise to the formation of the ultra-fine grains with an average size smaller than 2$\mu\textrm{m}$.

  • PDF

A Study on Plastic Strain Distribution of Machined Surface (기계가공면의 소성스트레인 분포에 관한 연구)

  • ;飯野 豊
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.111-117
    • /
    • 2000
  • The plastically deformed layer in a machined surface must be considered in precision machining process. Therefore the analysis of the machined surface, including the plastic deformation and strain distribution should be carried out quantitatively. The subsequent recrystallization technique was presented for analysis of the plastically deformed layer in the machined surface, and the technique was successfully applied to determine the plastic strain in the machined surface. This investigation is to evaluate the plastic strain in the distance 0.1mm from the machined surface, and in particular, to find the effect of shear angle, shear strain, cutting energy etc. on the plastic strain.

  • PDF

기계가공면의 소성 스트레인에 관한 연구

  • 김태영;신형곤;소율영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.54-58
    • /
    • 1991
  • It is well known that metal cutting leaves a plastically deformed layer in the machined surface. This residual phenomenon affects in various forms the physical properties of machined components such as the fatigue strength, the dimensional instability, microcracks, and the stress corrosion cracking. These physical properties, so called surface integrity, are very important for designing highly stressed and critically loaded components. Typical plastic strains in the machined surface are very difficult to measure, since they are located within a very short distance from the surface and they change very rapidly. There is an alternative way to determine the residual strain in plastically deformed materials by measuring the grain size after a subsequent recrystallization process. Although, this technique has been successfully applied by several researchers to find the plastic zone around notches and cracks in various materials and welding beads, few works have been reported using the recrystallization method to determine the residual strains in machined surface. Therefore, the purpose of this investigation Is to explore the effectiveness of the recrystallization technique in machining applications, and in particular, to find the effect of cutting parameters, i.e., depth of cut and rake angle on the plastic strains.

  • PDF

Zone-Melting Recrystallization of Si Films on $SiO_2$ with a Graphite-Strip-Heater (흑연 막대 발열체를 이용한 SOI구조의 Zone-melting 재결정화 연구)

  • 김현수;김춘근;민석기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.527-533
    • /
    • 1990
  • Zone-melting recrystallization (ZMR) system using two graphite heaters(a stationary sheet and a narrow movable bar) was constructed and implemented in recrystallization op Si films on insulating layers. The recystallized Si films were examined by Nomarski contrast optical microscopy after Dash etching, transmission electron diffraction pattern, and x-ray diffraction. With optimum conditions of process parameters(input powers of the bottom and upper heater, scanning speed of the upper heater, and the gap between sample and upper heater), the recrystallized Si layer has a (100) texture, but contains many subboundaries. The subgrains are misoriented by < 0.5\ulcorner and the average spacing between subboundaries is about 25\ulcorner.

  • PDF