• 제목/요약/키워드: Recovery of metal

검색결과 543건 처리시간 0.224초

금속오링씰의 컴플라이언트 메커니즘 위상최적설계 (Compliant Mechanism Topology Optimization of Metal O-Ring)

  • 김근홍;이영신;양형렬
    • 대한기계학회논문집A
    • /
    • 제37권4호
    • /
    • pp.537-545
    • /
    • 2013
  • 금속씰의 탄성복원력은 기밀성능을 결정하는 매우 중요한 요소이다. 본 연구는 장시간 운전조건에서 기밀성능을 유지할 수 있는 금속오링씰의 구조, 즉 탄성복원력이 우수한 구조를 얻기 위하여 컴플라이언트 메커니즘 위상최적화법을 도입하였다. 진화구조최적화법의 위상최적화 알고리듬이 사용되었으며, 강성 및 유연성을 동시에 고려하는 두 가지 종류의 목적함수가 사용되었다. 금속오링씰의 외형을 고려하여 원형의 최적화 설계영역이 고려되었으며 최적화 결과로 나타난 위상의 탄성복원력은 상용품의 탄성복원력과 비교되었다.

Base Metal 가격상승과 중국의 경제성장 (Base Metal's Price Hike and Chinese Economic Growth)

  • 이현복
    • 자원환경지질
    • /
    • 제43권5호
    • /
    • pp.523-528
    • /
    • 2010
  • 미국발 금융위기 여파로 세계경제가 침체되변서 LME의 base metal 가격이 2008년 4/4, 분기 급락하였으나, 2009년 1-7월 거시경제 회복신호와 함께 base metal 가격이 다시 상승세를 보였다. Base meta1 상승 배경에는 미국 기업들의 개선된 실적 발표로 산업생산 및 제조업지수가 개선된 것 미달러화 약세로 인한 원자재 가격 상승, 그리고 무엇보다도 세계 금융 위기 속에도 경제성장을 위한 중국의 원자재 수요 증가가 주요 원인으로 꼽힌다. 이에 본 논문에서는 base metal 가격상승에 주요 base metal소비국의 수요가 영향을 주었는지를 중국 및 주요국 경제성장률을 가지고 회귀분석 하였다. 분석결과 중국의 경제 성장만이 LME시장의 base metal 가격상승에 영향을 주는 것으로 나타났다. 하지만 이런 결과에도 불구하고, 그동안 중국 상품의 주요 소비시장이었던 미국, 유럽 동 선진국들 경제의 본격적인 회복 없이 중국경제만으로 base metal 가격 상승랠리가 지속될지 여부를 보고자 한다.

use of immobilized cells

  • Jeong, B.C.;Macaskie, L.E.
    • 미생물과산업
    • /
    • 제19권4호
    • /
    • pp.2-13
    • /
    • 1993
  • Some microorganisms, including actinomycetes, cyanobacteria, and other bacteria, algae, fungi, and yeast, can accumulate and retain relatively high quantities of heavy metals and radionuclides from their external environments (1-4). Both living and dead cells can be used for biosorptive metal/radionuclide removal from solution. Thus microorganisms and products excreted by or derived from microbial cells (2) may provide an alternative or adjunct to conventional techniuqes of metal removal and recovery. Recent approaches have separated the microbial growth and metal removal process to manipulate production of metal-adsorptive capacity of bacteria and metal removal process. If pre-grown cells are immobilized and used for metal removal, mathematical modeling can be applied to predict immobilized cell reactor behavior under specific process conditions. Waste and microbial adsorbent could be separated from the treated flow in one step. Once treated, the metal waste is concentrated in a small volume of sorbed form for easy metal disposal or recovery.

  • PDF

A MODEL STUDY ON MULTISTEP RECOVERY OF ACTINIDES BASED ON THE DIFFERENCE IN DIFFUSION COEFFICIENTS WITHIN LIQUID METAL

  • CHUN, YOUNG-MIN;SHIN, HEON-CHEOL
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.588-595
    • /
    • 2015
  • This study presents an effective method for additional recovery of residual actinides in liquid electrodes after the electrowinning process of pyroprocessing. The major distinctive feature of this method is a reactor with multiple reaction cells separated by partition walls in order to improve the recovery yield, thereby using the interelement difference in diffusion coefficients within the liquid electrode and controlling the selectivity and purity of element recovery. Through an example of numerical simulation of the diffusion scenarios of individual elements, we verified that the proposed method could effectively separate the actinides (U and Pu) and rare-earth elements contained in liquid cadmium. We performed a five-step consecutive recovery process using a simplified conceptual reaction cell and recovered 58% of the initial amount of actinides (U + Pu) in high purity (${\geq}99%$).

PCB 제조 공정 중 발생한 슬러지 내 유가금속 회수를 위한 건식야금 공정에 관한 연구 (Study on the Pyro-metallurgical Process for Recovery of Valuable Metal in the Sludge Originated from PCB Manufacturing Process)

  • 한철웅;손성호;이만승;김용환
    • 자원리싸이클링
    • /
    • 제28권6호
    • /
    • pp.87-95
    • /
    • 2019
  • 본 연구에서는 인쇄회로기판(PCB) 제조 공정 중 발생한 슬러지 내 구리를 회수하기 위한 건식야금 공정 변수에 대해 조사하였다. 에칭 및 도금 공정에서 발생한 슬러지는 전처리 공정을 통해 수분과 유기물을 제거하였다. 열역학 상평형 계산을 통해 평형상과 슬래그 시스템을 선정하였으며, 유가금속 회수율에 미치는 건식야금 공정 변수에 대하여 조사하였다.

Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan

  • Carreon, Jose;Saucedo, Imelda;Navarro, Ricardo;Maldonado, Maria;Guerra, Ricardo;Guibal, Eric
    • Membrane and Water Treatment
    • /
    • 제1권4호
    • /
    • pp.231-251
    • /
    • 2010
  • The sulfatation of chitosan, by reaction with chlorosulfonic acid under controlled conditions, allowed increasing the pH range of chitosan solubility. The biopolymer was characterized using FTIR and $^{13}C$-NMR spectroscopy, elemental analysis and titration analysis and it was tested for mercury recovery by polymer enhanced ultrafiltration (PEUF). In slightly alkaline conditions (i.e., pH 8) mercury recovery was possible and at saturation of the polymer the molar ratio $-NH_2$/Hg(II) tended to 2.6. Polymer recycling was possible changing the pH to 2 and the polymer was reused for 3 cycles maintaining high metal recovery. The presence of chloride ions influences metal speciation and affinity for the polymer and "playing" with metal speciation allowed using the PEUF process for mercury separation from cadmium; at pH 11 the formation of hydroxo-complexes of Hg(II) limits it retention. Cake formation reveals the predominant controlling step for permeation flux.

Recycling of Aluminum Alloy from Al-Cu Metal Matrix Composite Reinforced with SiC Particulates

  • Sharma, Ashutosh;Ahn, Byungmin
    • 한국재료학회지
    • /
    • 제28권12호
    • /
    • pp.691-695
    • /
    • 2018
  • In this study, we investigate the recycling of aluminum-based metal matrix composites(AMCs) embedded with SiC particulates. The microstructure of the AMCs is characterized by X-ray diffraction and scanning electron microscopy. The possibility of recycling the composite scrap is attempted from the melted alloy and SiC particulates by re-melting, holding and solidification in crucibles. The recovery percentage of the matrix alloy is calculated after a number of holding times, 0, 5, 10, 15, 20, 25 and 30 minutes and for different particulate sizes and weight fractions in the Al matrix. The results show that the recovery percentage of the matrix alloy, as well as the time required for maximum recovery of the matrix, is dependent on the size and weight fraction of SiC particulates. In addition, the percentage recovery increases with particulate size but drops with the particulate fraction in the matrix. The time to reach maximum recovery falls rapidly with an increase in particulate size and fraction.

A Chelating Resin Containing 2-(2-Thiazolylazo)-5-dimethylaminophenol as the Functional Group: Synthesis and Sorption Behavior for Some Trace Metal Ions

  • Lee, Won;Lee, Si-Eun;Kim, Mi-Kyoung;Lee, Chang-Heon;Kim, Young-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권8호
    • /
    • pp.1067-1072
    • /
    • 2002
  • A new polystyrene-divinylbenzene resin containing 2-(2-thiazolylazo)-5-dimethylamino-phenol (TAM) functional groups has been synthesized and its sorption behavior for nineteen metal ions, including Zr(Ⅳ),Hf(Ⅳ) and U(Ⅵ) has been investigated by batch and column methods. The chelating resin showed high sorption affinity for Zr(Ⅳ) at pH 1-5 and U(Ⅵ) at pH 4. Some parameters affecting the sorption of the metal ions have been detailed. The breakthrough and overall capacities were measured under optimized conditions. The overall capacities of Zr(Ⅳ), Th(Ⅳ) and U(Ⅵ), which showed higher than the other metal ions, were 0.90,0.84 and 0.80 mmol/g, respectively. The elution order of metal ions at pH 4 was evaluated as Zr(Ⅳ) > Th(Ⅳ) > U(Ⅵ) > Cu(Ⅱ) > Hf(Ⅳ) > W(Ⅵ) > Mo(Ⅵ) > In(Ⅲ) > Sn(Ⅳ) > Cr(Ⅲ) > V(Ⅴ) > Fe(Ⅲ). Quantitative recovery of most metal ions except Zr(Ⅳ) was achieved using 2M HNO3. Desorption and recovery of Zr(Ⅳ) was successfully performed with 2 M HClO4 and 2 M HCl.

자동차용 폐 삼원촉매로부터의 희귀금속 회수공정 기술 동향 (Recovery of Rare Earth Metal from Used Automotive Three-Way Catalyst)

  • 홍연기
    • 융복합기술연구소 논문집
    • /
    • 제1권1호
    • /
    • pp.13-17
    • /
    • 2011
  • The car industry is one of the technological applications which more rare earth metals employes as three-way catalysts. Therefore, the recovery of rare earth metals from the used automotive three-way catalysts could be important source to obtain these metals. This work presents the analysis of market and demand for rare earth metal in automotive three-way catalyst and introduces the dry and the wet processes for the recovery of rare earth metals from used three-way catalyst. Finally, the alternative methods to conventional wet processes was simply suggested based on the economic and ecological point of view.

  • PDF

병뚜껑의 열분해에 대한 연구 (Research for Pyrolysis of Metal Caps)

  • 황재영;진달샘;서무룡
    • 한국환경과학회지
    • /
    • 제19권12호
    • /
    • pp.1355-1359
    • /
    • 2010
  • The application of metal caps has been continuously increased as real life are extended. Metal caps is usually made of aluminum and polyethylene(PE) as packing. Since metal caps contain 75% aluminum on a weight basis, metal caps may be a valuable source when these were properly recovered. The recovery methods of metal caps have mechanical peeling and incineration. However these are either hard to apply in some case or environmentally unacceptable. So in this investigation, recovery method of aluminum from metal caps was investigated using pyrolysis. The result shows that pyrolysis temperature and pyrolysis time was $450^{\circ}C$ and 120min. respectively. Also 100% of aluminum was recovered from metal caps. Heat content of recovered oil was high enough to use as a fuel representing 7,425.0, 7,793.1, 7,583.2, 7,726.2(cal/g). Heavy metal contens in the oil were under regulatory limit indicating.