• Title/Summary/Keyword: Reconstruction surface

Search Result 567, Processing Time 0.028 seconds

Development of a 3D Shape Reconstruction System for Defects on a Hot Steel Surface (고온 금속 표면 결함에 대한 3차원 형상 추출 시스템 개발)

  • Jang, Yu Jin;Lee, Joo Seob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.459-464
    • /
    • 2015
  • An on-line quality control of hot steel products is one of the important issues in the steel industry because of cost minimization. In recent years, relative depth information of surface defects is increasingly required for strict quality control. In this paper, a 3D shape reconstruction scheme for defects on a hot steel surface based on a multi-spectral photometric stereo method is proposed. After simultaneously illuminating a hot steel surface by using vertical/horizontal linearly polarized lights of green and blue light sources, the corresponding 4 images are obtained. The photometric stereo method is then applied with the aid of a GPU (Graphic Processing Unit) to reconstruct the shape of the target surface based on these images. The proposed scheme was validated through experiments.

Range image reconstruction based on multiresolution surface parameter estimation (다해상도 면 파라미터 추정을 이용한 거리영상 복원)

  • 장인수;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.58-66
    • /
    • 1997
  • This paper proposes a multiresolution surface parameter estimation method for range images. Based on robust estimation of surface parameters, it approximates a patch to a planar surface in the locally adaptive window. Selection of resolution is made pixelwise by comparing a locally computed homogeneity measure with th eglobal threshold determined by te distribution of the approximation error. The proposed multiresolution surface parameter estimation method is applied to range image reconstruction. Computer simulation results with noisy rnag eimages contaminated by additive gaussian noise and impulse noise show that the proposed multiresolution reconstruction method well preserves step and roof edges compared with the conventional methods. Also the segmentation method based on the estimated surface parameters is shown to be robust to noise.

  • PDF

An Optimal Thresholding Method for the Voxel Coloring in the 3D Shape Reconstruction

  • Ye, Soo-Young;Kim, Hyo-Sung;Yi, Young-Youl;Nam, Ki-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1695-1700
    • /
    • 2005
  • In this paper, we propose an optimal thresholding method for the voxel coloring in the reconstruction of a 3D shape. Our purposed method is a new approach to resolve the trade-off error of the threshold value on determining the photo-consistency in the conventional method. Optimal thresholding value is decided to compare the surface voxel of photo-consistency with inside voxel on the optic ray of the center camera. As iterating the process of the voxels, the threshold value is approached to the optimal value for the individual surface voxel. And also, graph cut method is reduced to the surface noise on eliminating neighboring voxel. To verify the proposed algorithm, we simulated in the virtual and real environment. It is advantaged to speed up and accuracy of a 3D face reconstruction by applying the methods of optimal threshold and graph cut as compare with conventional algorithms.

  • PDF

Deformable Surface 3D Reconstruction from a Single Image by Linear Programming

  • Ma, Wenjuan;Sun, Shusen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.6
    • /
    • pp.3121-3142
    • /
    • 2017
  • We present a method for 3D shape reconstruction of inextensible deformable surfaces from a single image. The key of our approach is to represent the surface as a 3D triangulated mesh and formulate the reconstruction problem as a sequence of Linear Programming (LP) problems. The LP problem consists of data constraints which are 3D-to-2D keypoint correspondences and shape constraints which are designed to retain original lengths of mesh edges. We use a closed-form method to generate an initial structure, then refine this structure by solving the LP problem iteratively. Compared with previous methods, ours neither involves smoothness constraints nor temporal consistency, which enables us to recover shapes of surfaces with various deformations from a single image. The robustness and accuracy of our approach are evaluated quantitatively on synthetic data and qualitatively on real data.

Image Reconstruction Using Line-scan Image for LCD Surface Inspection (LCD표면 검사를 위한 라인스캔 영상의 재구성)

  • 고민석;김우섭;송영철;최두현;박길흠
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.4
    • /
    • pp.69-74
    • /
    • 2004
  • In this paper, we propose a novel method for improving defect-detection performance based on reconstruction of line-scan camera images using both the projection profiles and color space transform. The proposed method consists of RGB region segmentation, representative value reconstruction using the tracing system, and Y image reconstruction using color-space transformation. Through experiments it is demonstrated that the performance using the reconstructed image is better than that using aerial image for LCD surface inspection.

Surface Reconstruction from Cross-Sectional Images using the Shrink-Wrapping Algorithm (Shrink-Wrapping 알고리즘을 이용한 단층영상으로부터의 표면 재구성)

  • Park, Eun-Jin;Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.1
    • /
    • pp.28-37
    • /
    • 2007
  • This paper addresses a new surface reconstruction scheme for approximating the isosurface from a set of tomographic cross sectional images. Differently from the novel Marching cube algorithm, our method does not extract iso-density surface(isosurface) directly from the voxels but calculates the iso-density point(isopoint) first. After building the relatively coarse initial mesh by the Cell-boundary algorithm approximating the isosurface, it produces the final isosurface by iteratively shrinking and smoothing the initial mesh. Comparing with the Marching Cube algorithm, our method is robust and does not make any crack in resulting surface model. Furthermore, the proposed method surmounts the O(1)-adjacency limitation of MC in defining the isopoints by permitting the O(2) and O(3)-adjacent isopoints in surface reconstruction, and can produce more accurate isosurface. According to experiments, it is proved to be very robust and efficient for isosurface reconstruction from cross sectional images.

The Effects of Closed kinetic chain Exercises of Unstable Floor on the Stability of the Knee Joints of Patients with Anterior Cruciate Ligament Reconstruction (불안정한 바닥에서의 닫힌 사슬운동이 전십자인대 재건술 환자의 슬관절 안정성에 미치는 영향)

  • Kim, Yeon-Ju;Park, Rae-Joon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.3 no.1
    • /
    • pp.11-20
    • /
    • 2008
  • Purpose : This study was to comparison of EMG of an stable exercise group and unstable exercise group on patients who have had anterior cruciate ligament reconstruction(ACL reconstruction). Methods : The subjects of the study were patients who had no less than 4 weeks after ACL reconstruction and could stand on one leg, and they divided into a control group with 9 patients doing closed kinetic chain exercises on the stable floor and an experimental group with 10 patients doing closed kinetic chain exercises on the unstable floor and in order to compare degrees of the muscle activity of the thigh extensor and flexor was tested each before the exercise, in 3 weeks and 6 weeks after doing exercises by using surface electromyography (Surface EMG). The patients made 3 sets of exercises (10 times per set), each of which consisted of exercises using elastic bands and the squat. Results : There was statistic significance about the vastus medialis muscle. Conclusion : It is thought that the closed-chain exercise could be an exercise program through which patients could enhance the muscle activity of the vastus medialis muscle optionally among the quadriceps muscle and the hamstring muscles which should weaken after ACL reconstruction.

  • PDF

A Two-Phase Approach of Progressive Mesh Reconstruction from Unorganized Point Clouds

  • Zhang, Hongxin;Liu, Hua;Hua, Wei;Bao, Hujun
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 2007
  • This paper presents a practical approach for surface reconstruction from unoriented point clouds. Instead of estimating local surface orientation, we first generate a set of depth images from the input point clouds, and a coarse mesh is then generated based on them by space carving techniques. The resultant mesh is progressively refined by local mesh refinement and optimization according to surface distance measure. A manifold mesh approximating the input points within an given tolerance is finally obtained. Our approach is easy to implement, but has the ability to outputs high quality meshes in different resolutions. We show that the proposed approach is not sensitive to several types of data disfigurement and is able to reconstruct models robustly from variance input data.

AN EXPLICIT NUMERICAL ALGORITHM FOR SURFACE RECONSTRUCTION FROM UNORGANIZED POINTS USING GAUSSIAN FILTER

  • KIM, HYUNDONG;LEE, CHAEYOUNG;LEE, JAEHYUN;KIM, JAEYEON;YU, TAEYOUNG;CHUNG, GENE;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2019
  • We present an explicit numerical algorithm for surface reconstruction from unorganized points using the Gaussian filter. We construct a surface from unorganized points and solve the modified heat equation coupled with a fidelity term which keeps the given points. We apply the operator splitting method. First, instead of solving the diffusion term, we use the Gaussian filter which has the effect of diffusion. Next, we solve the fidelity term by using the fully implicit scheme. To investigate the proposed algorithm, we perform computational experiments and observe good results.

3D Shape Reconstruction from 2D Cross-Sections (단면 정보를 이용한 형상의 재구성)

  • Park, H.J.;Kim, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 1993
  • The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.

  • PDF