• Title/Summary/Keyword: Reconfigurable antenna

Search Result 70, Processing Time 0.033 seconds

Frequency Tunable and Miniaturized Zeroth-Order Resonant(ZOR) Antenna Design by Metamaterial (메타 물질을 이용하여 소형화와 주파수 가변이 가능한 영차 공진 안테나)

  • Jang, Young-Soo;Choi, Jae-Hyurk;Lim, Sung-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.8
    • /
    • pp.900-904
    • /
    • 2010
  • In this paper, a frequency tunable zeroth-order resonant(ZOR) antenna has been implemented. The ZOR characteristics of the proposed antenna is realized by using a composite right-and left-handed(CRLH) transmission line which consists of a rectangular slot on the ground plane of a mushroom structured antenna in order to minimize the antenna size. In addition, the tunable devices are introduced on the slotted ground plane for frequency tuning capability. Depending on the on and off states of the tunable device on the slotted ground plane, a shunt inductance value of the CRLH transmission line is changed and its resonant frequency becomes tunable. From the experimental results, the resonant frequency of the proposed antenna is changed from 4.92 GHz to 2.96 GHz. Additionally, the proposed antenna's size is reduced by 94.24 % compared with the half-wavelength patch antenna.

Package-type polarization switching antenna using silicon RF MEMS SPDT switches (실리콘 RF MEMS SPDT 스위치를 이용한 패키지 형태의 편파 스위칭 안테나)

  • Hyeon, Ik-Jae;Chung, Jin-Woo;Lim, Sung-Joon;Kim, Jong-Man;Baek, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1511_1512
    • /
    • 2009
  • This paper presents a polarization switching antenna integrated with silicon RF MEMS SPDT switches in the form of a package. A low-loss quartz substrate made of SoQ (silicon-on-quartz) bonding is used as a dielectric material of the patch antenna, as well as a packaging lid substrate of RF MEMS switches. The packaging/antenna substrate is bonded with the bottom substrate including feeding lines and RF MEMS switches by BCB adhesive bonding, and RF energy is transmitted from signal lines to antenna by slot coupling. Through this approach, fabrication complexity and degradation of RF performances of the antenna due to the parasitic effects, which are all caused from the packaging methods, can be reduced. This structure is expected to be used as a platform for reconfigurable antennas with RF MEMS tunable components. A linear polarization switching antenna operating at 19 GHz is manufactured based on the proposed method, and the fabrication process is carefully described. The s-parameters of the fabricated antenna at each state are measured to evaluate the antenna performance.

  • PDF

Multi-Functional Microstrip Spiral Antenna : Dual-Band Operation and Multi-Pattern Control (다양한 복사패턴을 가지는 이중대역용 다기능 마이크로스트립 스파이럴 안테나)

  • 김명기;오대영;박익모
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.11
    • /
    • pp.77-84
    • /
    • 2003
  • This paper presents a multi-functional microstrip spital antenna that operates in dual frequency bands. Several types of beam shape can be selected by controlling the phase difference of two spiral arms with the phase shifters located on each feed line. It has a normal beam at the lower frequency band, and four different patterns at the higher frequency band: normal beam, conical beam and two types of tilted beam. The antenna exhibits more than 10% of bandwidth at each band. The antenna is fabricated with conductor backed electromagnetic absorber in order to attain unidirectional radiation pattern and confirmed the multi-functionality by measurements.

Paper-Based Pattern Switchable Antenna Using Inkjet-Printing Technology (잉크젯 프린팅 기술을 이용한 종이 기반의 방사패턴 가변 안테나)

  • Eom, Seung Hyun;Lim, Sungjoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.613-619
    • /
    • 2015
  • In this paper, we proposed a paper-based pattern-switchable antenna using inkjet-printing technology. The proposed antenna is composed of two bow-tie antennas and a switching network. The bow-tie antennas are inkjet-printed on paper using a low cost home printer. The switching network is built on a printed-circuit-board(PCB) and consists of a single-pole-double-throw(SPDT) switch and balun element. A double-sided parallel-strip line(DSPSL) can convert the unbalanced microstrip mode to the balanced strip mode. Two bow-tie antennas have different radiation patterns because of the different orientation of the reflectors. It is demonstrated from EM simulation and measurement that the radiation patterns of the proposed antenna are successfully switched by the SPDT.

Double Square Patch Antenna with Inductive Bridges for WLAN Dual-Band (인덕티브 브릿지를 가진 WLAN 이중 대역 이중 사각 패치 안테나)

  • Yang, Chan-Woo;Jung, Chang-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2615-2618
    • /
    • 2009
  • Double rectangular patch with 4-bridges is investigated for solution of IEEE 802.11b/g (2.4 GHz) and 802.11a (5.5 GHz). Rectangular patch for 5.5 GHz frequency band is printed on the PCB substrate and connected to another rectangular patch for 2.4 GHz frequency band with 4-bridges to obtain dual band operation in an antenna element. 4-bridges can modify the desired frequency band from its original frequency band by changing its width. Gain of 2.4 GHz patch is 5 dBi and 5.5 GHz patch is 3.7 dBi at ${\theta}=0^{\circ}$.

Design of UHF Band Microstrip Antenna for Recovering Resonant Frequency and Return Loss Automatically (UHF 대역 공진 주파수 및 반사 손실 오토튜닝 마이크로스트립 안테나 설계)

  • Kim, Young-Ro;Kim, Yong-Hyu;Hur, Myung-Joon;Woo, Jong-Myung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.3
    • /
    • pp.219-232
    • /
    • 2013
  • This paper presents a microstrip antenna which recovers its resonant frequency and impedance shifted automatically by the approach of other objects such as hands. This can be used for telemetry sensor applications in the ultrahigh frequency(UHF) industrial, scientific, and medical(ISM) band. It is the key element that an frequency-reconfigurable antenna could be electrically controlled. This antenna is miniaturized by loading the folded plates at both radiating edges, and varactor diodes are installed between the radiating edges and the ground plane to control the resonant frequency by adjusting the DC bias asymmetrically. Using this voltage-controlled antenna and the micro controller peripheral circuits of reading the returned level, the antenna is designed and fabricated which recovers its resonant frequency and impedance automatically. Designed frequency auto recovering antenna is conformed to be recovered within a few seconds when the resonant frequency and impedance are shifted by the approach of other objects such as hand, metal plate, dielectric and so on.

Miniaturization Development of Transmit/Receive Module using a 10W MEMS switch (10W급 MEMS 스위치를 이용한 송수신모듈 소형화 개발)

  • Yi, Hui-min;Jun, Byoung-chul;Lee, Bok-hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2417-2424
    • /
    • 2016
  • Small size and light weight is very important for components used in radar mounted platform such as airborne radar. Recently, the active phased array radar is developed as an array of antennas for thousands of transmit/receive modules to be used as a multi-function radar that can detect and track targets. In this case, the size and weight of the transmit/receive modules are critical factor for developing the radar. In this paper, we developed a compact transmit/receive module using the 10W RF MEMS switch domestically localizing and reduced the circuit area to about 86.5% compared to using a circulator. The developed module satisfies not only electrical requirements but also MIL-STD's environmental specifications. So it can be used in a military device. It can be used at adaptive tunable receivers, reconfigurable smart active antennas and wide band beam electrical steering antennas.

The Analysis of Reducing Power Consumption and CO2 Emission in the Advanced Mobile Communication Base Station (다중 대역용 차세대 이동통신 기지국 시스템의 전력 및 탄소배출량 절감효과 분석)

  • Oh, Sung-Kon;An, Jun-O;Kim, Boo-Gyoun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.6B
    • /
    • pp.642-649
    • /
    • 2011
  • In this paper, we present the analysis of the characteristics of advanced mobile communication base station with multi-band about power loss, power efficiency and carbon reduction considering cable power loss. The advanced mobile base station system is installed on the outdoor for Antenna and RF part, and then the power loss is reduced because the fiber optic cable is used between RF part and baseband part. If the cable power loss is reduced by 5 dB replacing an entire the advanced base station systems, annual power consumption is reduced total 49,038 MWh in the CDMA 20W, WCDMA 30W, WiBro 10W systems. Furthermore the advanced base station system of annual $CO_2$ emission is 20,832 $tCO_2$ compare to 65,878 $tCO_2$. Therefore the advanced base system is confirmed considering green IT technology for the advanced mobile communication base station.

A Triple-Band Transceiver Module for 2.3/2.5/3.5 GHz Mobile WiMAX Applications

  • Jang, Yeon-Su;Kang, Sung-Chan;Kim, Young-Eil;Lee, Jong-Ryul;Yi, Jae-Hoon;Chun, Kuk-Jin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • A triple-band transceiver module for 2.3/2.5/3.5 GHz mobile WiMAX, IEEE 802.16e, applications is introduced. The suggested transceiver module consists of RFIC, reconfigurable/multi-resonance MIMO antenna, embedded PCB, mobile WiMAX base band, memory and channel selection front-end module. The RFIC is fabricated in $0.13{\mu}m$ RF CMOS process and has 3.5 dB noise figure(NF) of receiver and 1 dBm maximum power of transmitter with 68-pin QFN package, $8{\times}8\;mm^2$ area. The area reduction of transceiver module is achieved by using embedded PCB which decreases area by 9% of the area of transceiver module with normal PCB. The developed triple-band mobile WiMAX transceiver module is tested by performing radio conformance test(RCT) and measuring carrier to interference plus noise ratio (CINR) and received signal strength indication (RSSI) in each 2.3/2.5/3.5 GHz frequency.

Development of Multi-Band Multi-Mode SDR Radar Platform (다중 대역 다중 모드 SDR 레이다 플랫폼 개발)

  • Kwag, Young-Kil;Woo, In-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.11
    • /
    • pp.949-958
    • /
    • 2016
  • This paper presents the new development result of the multi-band, the multi-mode SDR(Software Defined Radar) platform. The SDR hardware platform is implemented by using the reconfigurable multi-band RF transceiver and antenna modules of S, X, and K-bands, and a programmable signal processing module. The SDR software platform is implemented by using the multi-mode waveform generation of CW, Pulse, FMCW, and LFM Chirp as well as the adaptable algorithm library of signal processing and open API software modules. Through the integrated test of the SDR platform, the operational performance was verified in real-time. Also, through the field-application test, the ground target and air-vehicle drone target were successfully detected and their test results were presented.