협력적 여과 시스템은 내용 기반 여과 시스템과는 대조적으로 아이템에 대한 정보를 반영하지 않으며, 또한 사용자가 자신의 흥미에 대한 정보를 제공하지 않았을 경우 추천을 할 수 없다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 단점을 해결하기 위하여 연관 아이템 트리를 이용한 추천 에이전트를 제안한다. 제안된 방법은 벡터 공간 모델과 K-means 알고리즘을 이용하여 사용자를 군집시킨 후 그룹의 대표 평가값을 추출한다. 다음으로, 군집된 그룹별로 아이템간의 상호정보량을 계산하여 아이템간의 연관도를 파악하며, 이를 기반으로 연관 아이템 트리를 생성한다. 이와 같이 생성한 각 그룹의 연관 아이템 트리와 그룹의 대표 평가값을 이용하여 새로운 사용자에게 아이템을 추천한다. 제안된 추천 에이전트는 사용자 정보와 아이템 정보를 병합하여 새로운 사용자에게 아이템을 추천하며, 아이템간의 유사도를 계산하기 위하여 상호정보량을 사용하고 이를 기반으로 연관 아이템 트리를 생성함으로써 초기에 아이템에 대하여 평가한 정보가 부족한 사용자에게 정확도가 높은 아이템을 추천할 수 있다는 장점을 갖는다. 제안된 방법은 MovieLens 추천 시스템의 데이터 집합을 사용하여 기존의 방법과 비교하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.538-561
/
2020
Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.
협력 필터링은 가장 성공적으로 사용되는 추천 시스템의 방법으로서, 서적, 음악 등 다방면의 상업 시스템에서 활용되어왔다. 이러한 방법의 핵심은 사용자에게 가장 적합한 추천인들을 선정하는 것인데, 이를 위하여 다양한 유사도 측정 방법이 연구되었다. 본 연구에서는 추천 성능의 향상을 위하여 기존의 유사도 값에 근거한 추천인 선정의 문제점을 파악하고 이의 개선책으로서 유사도 값과 공통평가항목수의 비율을 기준으로 하여 가변적으로 추천인을 결정하는 방법을 제시한다. 실험을 통하여 다양한 기준값에 대해 성능 변화를 관찰한 결과, 예측 성능과 추천 성능의 두 측면 모두에서 제안 방법이 매우 향상된 결과를 가져왔으며, 특히 주어진 기준값을 만족하는 추천인 수가 적을 때에도 향상된 성능 결과를 보였다.
추천 시스템은 사용자들에게 관심 품목을 찾거나 평가하는데 도움을 준다. 이런 시스템은 전자 상거래를 비롯하여 전자 도서관 같은 여러 영역에서 강력한 도구가 되었다. 소비자의 인구통계학적 및 과거 구매 행동에 대한 분석을 바탕으로 미래의 구매 행동을 예측하여 판매자가 고객에게 상품을 추천할 수 있다. 본 논문에서는 고객의 패턴이나 성향에 가장 적절한 상품을 탐색하여 고객의 만족도를 높여줄 수 있는 개인화 추천시스템의 설계 및 개발에 관하여 기술한다. 제안된 시스템은 데이터 마이닝의 연관규칙을 적용하여 고객의 구매를 예측할 수 있는 실시간 분석서비스를 제공할 수 있다.
Many of the current successful commercial recommender systems utilize collaborative filtering techniques. This technique recommends products to the active user based on product preference history of the neighbor users. Those users with similar preferences to the active user are typically named his/her neighbors. Hence, finding neighbors is critical to performance of the system. Although much effort for developing similarity measures has been devoted in the literature, there leaves a lot to be improved, especially in the aspect of handling subjectivity or vagueness in user preference ratings. This paper addresses this problem and presents a novel similarity measure using fuzzy logic for selecting neighbors. Experimental studies are conducted to reveal that the proposed measure achieved significant performance improvement.
KSII Transactions on Internet and Information Systems (TIIS)
/
제4권2호
/
pp.174-190
/
2010
In ubiquitous computing, invisible devices and software are connected to one another to provide convenient services to users [1][2]. Users hope to obtain a personalized service which is composed of customized devices among sharable devices in a ubiquitous smart space (which is called USS in this paper). However, the situations of each user are different and user preferences also are various. Although users request the same service in the same USS, the most suitable devices for composing the service are different for each user. For these user requirements, this paper proposes a device recommender system which infers and recommends customized devices for composing a user required service. The objective of this paper is the development of the systems for recommending devices through context-aware inference in peer-to-peer environments. For this goal, this paper considers the context and user preference. Also I implement a prototype system and test performance on the real ubiquitous mobile object (UMO).
본 논문에서는 커널 함수를 이용한 기법을 통한 추천 시스템을 제안한다. 제안된 추천 시스템은 기계 학습 기법을 이용하여 새로운 아이템에 대한 사용자의 선호도를 예측하고 예측된 결과를 바탕으로 사용자가 선호할만한 아이템들을 추천한다. 일반적으로 사용자의 평가 정보는 잡음이 포함되어 있고 일관성이 적으므로 잡음에 영향을 적게 받는 이원 분류기인 이중 마진 Lagrangian support vector machine (DMLSVM) 을 사용한다. 제안된 기법은 MovieLens 데이터베이스에 적용하였다. 또한 시뮬레이션을 통해 제안된 방법의 우수성을 확인하였다.
추천시스템은 사용자들의 관심을 끄는 아이템을 그들이 보다 쉽게 찾도록 도와주거나, 그들의 기호에 기반하여 의미 있는 아이템들을 제공한다. 지금까지 가장 성공적이었던 협업 필터링 기반 추천시스템은 다른 사용자들의 의견을 참조하여 추천을 원하는 사용자에게 추천을 한다. 즉, 아이템들에 대한 사용자 기호를 나타내는 다른 사용자들의 평가정보가 추천을 위한 정보원으로 사용된다. 이처럼, 협업 필터링 기반 추천시스템이 사용자들의 기호만을 이용하도록 설계되었지만, 다른 정보를 이용하면 추천시스템의 성능과 정확도를 높일 수 있을 것으로 사료되어, 본 논문에서는 유사 정도와 인구통계학 정보를 이용한 협업 필터링 기반 추천시스템을 제안한다. 이런 추천시스템에서는 평가정보가 계속적으로 누적되기 때문에, 추천시스템의 정확도를 유지할 수 있는 한, 사용하는 데이터의 양을 줄이는 게 중요하다. 본 논문에서는 유사 정도와 인구통계학 정보를, 사용할 데이터의 양을 줄이기 위한 기준으로 사용하여 자연스레 시스템의 성능을 향상시켰다. 본 논문에서는 실험을 통하여 유사 정도의 사용이 추천시스템의 정확도를 높여주었고, 특정 인구통계학 정보의 사용도 추천시스템의 정확도를 높였음을 보였다.
사람들은 자신의 더 나은 선택을 위하여 끊임없이 노력한다. 이러한 이유로 추천시스템이 개발되었으며, 1990년대 초반부터 계속해서 발전하고 있다. 그 중, 협업필터링 기법은 추천시스템 분야에서 우수한 성능을 보였으며, 기계학습이 등장하면서 기계학습을 이용한 추천시스템에 관한 연구가 활발히 진행되었다. 본 연구는 앙상블 방법 중에서 스태킹 모형을 사용하여 추천시스템을 구축하며, 실제 고객의 상품 구매 데이터를 활용하여 협업필터링과 기계학습 기반 스태킹 모형으로 추천시스템을 개발하였다. 제시한 모형의 추천 성능은 기존의 협업필터링과 기계학습 기반 추천시스템과 비교하여 모형의 우수성을 확인하며, 연구결과는 스태킹 모형을 이용한 추천시스템 모형의 추천 성능이 개선됨을 확인하였다. 향후 본 연구에서 제안한 모형은 개인이나 기업이 더 나은 선택을 하여 상품을 추천할 때 도움을 줄 것으로 기대한다.
웹사이트에서의 개인화 디자인에 대한 요구는 갈수록 증대되고 있다. 현재 많이 활용되고 있는 개인화 디자인 방법은 구축비용과 시간이 적게 든다는 장점을 가지고 있어 웹사이트에 손쉽게 적용될 수 있다. 그러나 사용자의 데이터가 축적되지 않으므로 보다 세련된 개인화가 어렵다는 단점을 가지고 있다. 본 연구에서는 웹사이트 디자인의 개인화를 위한 보다 발전된 방법으로서의 추천 시스템을 연구하였다. 그 결과로 현재 활용되고 있는 추천 시스템들의 내용과 특징에 대해서 정리하였으며 이를 바탕으로 협동적 필터링 기법을 적용한 디자인 추천 시스템을 구성하였고 그 세부적인 과정과 절차를 제안하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.