본 연구는 어떤 소셜정보가 추천신뢰에 유의한 영향을 미치는지와 이들 간의 영향관계가 제품 관여도 수준에 따라 어떻게 달라지는지를 실증적으로 살펴보는 것을 목표로 하고 있다. 관련 선행연구에 대한 검토 결과를 토대로 추천신뢰에 유의한 영향을 미칠 것으로 예상되는 소셜정보의 구성요소로써 친밀감, 유사성, 성실성, 명성 등 네 가지 요소를 도출하였으며, 이들 소셜정보와 추천신뢰 간의 영향관계에 관한 연구모형 구축 및 가설검정을 실시하였다. 더불어 소셜정보와 추천신뢰 간의 관계에 있어 제품 관여도가 유의한 조절효과를 가지는지 분석해 보았다. Google Docs 사용자들을 대상으로 온라인 설문조사를 수행한 결과, 총 55명의 응답자로부터 205개의 신뢰 관계(링크)에 관한 자료를 수집하여 가설검정을 실시한 결과는 다음과 같다. 첫째, 소셜정보의 네 가지 차원인 친밀성, 유사성, 성실성, 명성은 모두 추천신뢰에 긍정적인 영향을 미치는 것으로 밝혀졌다. 둘째, 소셜정보 중 친밀성 및 명성과 추천신뢰 간의 관계에 있어 제품 관여도가 유의한 조절효과를 가지는 것으로 나타났다. 연구결과를 토대로 관련 분야에 대한 학문적, 관리적 차원의 시사점을 도출하였으며, 향후 연구방향을 제시하였다.
소셜 네트워크는 사용자들의 공통된 관심사, 경험, 그리고 일상 생활들을 함께 공유하기 위해 소셜 네트워크 상 사람들을 서로 연결시켜주는 거대한 커뮤니케이션 플랫폼이다. 소셜 네트워크상의 사용자들은 포스팅, 댓글, 인스턴스 메시지, 게임, 소셜 이벤트 외에도 다양한 애플리케이션을 통해 다른 사용자들과 소통하고 개인 정보 관리하는데 많은 시간을 소비한다. 소셜 네트워크 상의 풍부한 사용자 정보는 추천시스템이 추천 성능을 향상시키기 위해 필요한 큰 잠재력이 되었다. 대부분의 사용자들은 어떤 상품을 구매하기 전 가까운 관계이거나 같은 성향을 가진 사람들의 의견을 반영하여 의사 결정을 하게 된다. 그러므로 소셜 네트워크에서의 사용자 관계는 추천시스템을 위한 사용자 선호도 예측을 효율적으로 높이는데 중요한 요소라 할 수 있다. 일부 연구자들은 소셜 네트워크에서의 사용자와 다른 사용자들 사이의 상호작용 즉, 소셜 관계(social relationship)와 같은 소셜 데이터가 추천시스템에서 추천의 질에 어떠한 영향을 미치는가를 연구하고 있다. 추천시스템은 아마존, 이베이, Last.fm과 같은 큰 규모의 전자상거래 사이트 또한 채택하여 사용되는 시스템으로, 추천시스템을 위한 방법으로는 협업적 여과 방법과 내용 기반 여과 방법이 있다. 협업적 여과 방법은 사용자들의 선호도 학습에 의해 사용자가 아직 평가하지 않은 아이템 중 선호할 수 있는 아이템을 정확하게 제안하기 위한 추천시스템 방법 중 하나이다. 협업적 여과는 사용자들의 데이터에 초점을 맞춘 방법으로 유사한 배경과 선호도를 가지는 사용자들로부터 정보를 수집하여 사용자들의 선호도 예측을 자동으로 발생시킨다. 특히 협업적 여과는 근접한 이웃 사용자들에 의해서 목적 사용자가 선호할 수 있는 아이템을 제시하는 것으로 유사한 이웃 사용자를 찾는 것이 중요하다. 좋은 이웃 사용자 발견은 사용자와 아이템을 고려하는 방법이 일반적이다. 각 사용자는 아이템 즉, 영화, 상품, 책 등에 자신의 선호도를 나타내기 위하여 평가 값을 입력하고, 시스템은 이를 바탕으로 사용자-평가 행렬을 구축한다. 이 사용자-평가 행렬은 목적 사용자와 유사하게 아이템을 평가한 사용자 그룹을 찾기 위한 것으로, 목적 사용자가 아직 평가하지 않은 아이템에 대하여 사용자-평가 매트릭스를 통해 그 평가 값을 예측한다. 현재 이 협업적 여과 방법은 전자상거래와 정보 검색에서 적용되어 개인화 시스템에 효율적으로 사용되고 있다. 하지만 초기 사용자 문제, 데이터 희박성 문제와 확장성 그리고 예측 정확도 향상 등 해결해야 할 과제가 여전히 남아 있다. 이러한 문제들을 해소하기 위해 많은 연구자들은 하이브리드, 신뢰기반, 소셜 네트워크 기반 협업적 여과와 같은 다양한 방법을 제안하였다. 본 논문에서는 전통적인 협업적 여과 방식의 예측 정확도와 추천 성능을 향상시키기 위해 소셜 네트워크에 존재하는 소셜 관계를 이용한 협업적 여과 시스템을 제안한다. 소셜 관계는 소셜 네트워크 서비스 중 하나인 페이스북 사용자들이 남긴 포스팅과 사용자의 소셜 네트워크 친구와 의견 교류 중 남긴 코멘트와 같은 사용자 행동을 기반으로 정의된다. 소셜 관계를 구축하기 위해 소셜 네트워크 사용자의 포스팅과 댓글을 추출하고, 추출된 텍스트에 불용어 및 특수 기호 제거와 스테밍 등 전처리를 수행하였다. 특징 벡터는 TF-IDF를 이용하여 전처리된 텍스트에 나타난 각 단어에 대한 특징 점수를 계산함으로써 구축된다. 본 논문에서 이웃 사용자를 결정하기 위해 사용되는 사용자 간 유사도는 특징 벡터를 이용한 사용자 행동 유사도와 사용자의 영화 평가를 기반으로 한 전통적 방법의 유사도를 결합하여 계산된다. 제안하는 시스템은 목표 사용자와 제안한 방법을 통해 결정된 이웃 사용자 집단을 기반으로 목표 사용자가 평가하지 않은 아이템에 대한 선호도를 예측하고 Top-N 아이템을 선별하여 사용자에게 아이템을 추천하게 된다. 본 논문에서 제안하는 방법을 확인하고 평가하기 위하여 IMDB에서 제공하는 영화 정보 기반으로 영화 평가 시스템을 구축하였다. 예측 정확도를 평가하기 위해 MAE 값을 이용하여 제안하는 알고리즘이 얼마나 정확한 추천을 수행하는지에 대한 예측 정확도를 측정하였다. 그리고 정확도, 재현율 및 F1값 등을 활용하여 시스템의 성능을 평가하였으며, 시스템의 추천 품질은 커버리지를 이용하여 평가되었다. 실험 결과로부터 본 논문에서 제안한 시스템이 보다 더 정확하고 좋은 성능으로 사용자에게 아이템을 추천하는 것을 볼 수 있었다. 특히 소셜 네트워크에서 사용자 행동을 기반으로 한 소셜 관계를 이용함으로써 추천 정확도를 6% 향상시킴을 보였다. 또한 벤치마크 알고리즘과의 성능비교 실험을 통해 7% 향상된 추천 성능의 결과를 보여준다. 그러므로 사용자의 행동으로부터 관찰된 소셜 관계를 CF방법과 결합한 제안한 방법이 정확한 추천시스템을 위해 유용하며, 추천시스템의 성능과 품질을 향상시킬 수 있음을 알 수 있다.
정보통신기술 발달로 스마트폰이 보급되면서, 온라인 쇼핑몰 서비스는 컴퓨터가 아닌 모바일로도 사용이 가능해졌다. 그로 인해 온라인 쇼핑몰 서비스를 이용하는 사용자는 급격히 증가하게 되고, 거래되는 제품의 종류 또한 방대해지고 있다. 따라서 기업은 이익을 최대화하기 위해서는 사용자가 관심을 가질만한 정보를 제공해주는 것이 중요하다. 이를 위해 사용자의 과거 행동 데이터나 행동 구매 기록을 기반으로 사용자에게 필요한 정보 또는 제품을 제시하는 것을 추천 시스템이라 한다. 현재 추천 서비스를 제공하는 대표적인 해외 기업으로는 Netflix, Amazon, YouTube 등이 있다. 최근 이러한 전자상거래 사이트에서는 사용자가 해당 제품에 대한 리뷰가 유용한지에 대해 투표할 수 있는 기능을 제공하고 있다. 이를 통해, 사용자는 유용하다고 판단되는 제품에 대한 리뷰와 평점을 참고하여 구매 의사결정을 내린다. 따라서 본 연구에서는 제품에 대한 평점과 리뷰의 유용성 정보 간의 상관관계를 파악하고, 리뷰의 유용성 정보를 추천 시스템에 반영하여 추천 성능을 확인하고자 한다. 또한 대부분의 사용자들은 만족한 제품에만 평점을 부여하는 경향이 있고 제품에 대한 평점이 높을수록 구매 의도가 높아지는 경향이 있다. 따라서 전통적인 협업 필터링 기법에 모든 평점을 반영한 결과와 4점과 5점 평점만을 반영한 추천 성능 결과를 비교하고자 한다. 이를 위해 본 연구에서는 Amazon에서 수집한 전자 제품 데이터를 사용하였으며, 실험 결과는 평점과 리뷰 유용성 정보 간 상관관계가 있는 것으로 확인되었다. 또한 모든 평점과 4점과 5점 평점만을 추천 시스템에 반영하여 추천 성능을 비교한 결과, 4점과 5점 평점만을 추천 시스템에 반영한 결과의 추천 성능이 더 높게 나타났다. 그리고 리뷰 유용성 정보를 추천 시스템에 반영한 결과는 리뷰가 유용할수록 추천 성능은 높게 나타나는 것으로 확인하였다. 따라서 이러한 실험 결과는 향후 개인화 추천 서비스의 성능 향상에 기여하고, 전자상거래 사이트에 시사점을 제공할 수 있을 것으로 본다.
시장 수요 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로서, 기업경영활동에 있어 효율적인 의사결정을 내릴 수 있는 근거로 활용된다는 점에서 중요하게 인식되고 있다. 신규 시장의 수요를 예측하기 위해 다양한 시장성장모형이 개발되어 왔다. 이런 모형들은 일반적으로 시장의 크기 변화의 동인을 신기술 확산으로 보고 소비자인 개인에게 기술이 확산되는 과정을 통해 시장 크기가 변하는 과정을 확산모형으로 구현하게 된다. 그러나, 시장이 형성된 직후에는 수요 관측치의 부족으로 인해 혁신계수, 모방계수와 같은 예측모형의 모수를 정확하게 추정하는 것이 쉽지 않다. 이런 경우, 전문가의 판단 하에 예측하고자 하는 시장과 유사한 시장을 결정하고 이를 참고하여 모수를 추정하게 되는데, 어떤 시장을 유사하다고 판단하느냐에 따라 성장모형은 크게 달라지게 되므로, 정확한 예측을 위해서는 유사 시장을 찾는 것은 매우 중요하다. 그러나, 이런 방식은 직관과 경험이라는 정성적 판단에 크게 의존함으로써 일관성이 떨어질 수밖에 없으며, 결국, 만족할 만한 수준의 결과를 얻기 힘들다는 단점을 지닌다. 이런 정성적 방법은 유사도가 더 높은 시장을 누락시키고 유사도가 낮은 시장을 선택하는 오류를 일으킬 수 있다. 이런 이유로, 본 연구는 신규 시장의 모수를 추정하기 위해 필요한 유사시장을 누락 없이 효과적으로 찾아낼 수 있는 사례기반 전문가 시스템을 설계하고자 수행되었다. 제안된 모형은 데이터 마이닝의 군집분석 기법과 추천 시스템의 내용 기반 필터링 방법론을 기반으로 전문가 시스템으로 구현되었다. 본 연구에서 개발된 시스템의 유용성을 확인하고자 정보통신분야 시장의 모수를 추정하는 실험을 실시하였다. 전문가를 대상으로 실시된 실험에서, 시스템을 사용한 모수의 추정치가 시스템을 사용하지 않았을 때와 비교하여 실제 모수와 더 가까움을 보임으로써 시스템의 유용성을 증명하였다.
Click-Through Rate(CTR) 예측은 추천시스템에서 후보 항목의 순위를 결정하고 높은 순위의 항목들을 추천하여 고객의 정보 과부하를 줄임과 동시에 판매 촉진을 통한 수익 극대화를 달성할 수 있는 핵심 기능이다. 자연어 처리와 이미지 분류 분야는 심층신경망(deep neural network)의 활용을 통한 괄목한 성장을 하고 있다. 최근 이 분야의 주류를 이루던 모델과 차별화된 어텐션(attention) 메커니즘 기반의 트랜스포머(transformer) 모델이 제안되어 state-of-the-art를 달성하였다. 본 연구에서는 CTR 예측을 위한 트랜스포머 기반 모델의 성능 향상 방안을 제시한다. 자연어와 이미지 데이터와는 다른 이산적(discrete)이며 범주적(categorical)인 CTR 데이터 특성이 모델 성능에 미치는 영향력을 분석하기 위해 임베딩의 일반화(regularization)와 트랜스포머의 정규화(normalization)에 관한 실험을 수행한다. 실험 결과에 따르면, CTR 데이터 입력 처리를 위한 임베딩 과정에서 L2 일반화의 적용과 트랜스포머 모델의 기본 정규화 방법인 레이어 정규화 대신 배치 정규화를 적용할 때 예측 성능이 크게 향상됨을 확인하였다.
레스토랑 산업의 성장과 함께 레스토랑 오프라인 매장 수는 점차 증가하지만, 소비자는 자신의 선호도에 적합한 레스토랑을 선택하는 데 어려움을 경험하고 있다. 따라서 소비자의 선호도에 맞는 레스토랑을 추천하는 개인화된 추천 서비스의 필요성이 대두하고 있다. 기존 연구에서는 설문조사 및 평점 정보를 활용하여 소비자 선호도를 조사했으나, 이는 소비자의 구체적인 선호도를 효과적으로 반영하는데 어려움이 존재한다. 이러한 배경하에 온라인 리뷰는 방문 동기, 음식 평가 등 레스토랑에 대한 소비자 구체적인 선호도를 효과적으로 반영하기 때문에 필수적인 정보이다. 한편, 일부 연구에서는 리뷰 텍스트에 전통적인 기계학습 기법을 적용하여 소비자의 선호도를 측정하였다. 그러나 이러한 접근 방식은 주변 단어나 맥락을 고려하지 못하는 한계점이 존재한다. 따라서 본 연구는 딥러닝을 효과적으로 활용하여 온라인 리뷰에서 소비자의 선호도를 정교하게 추출하는 리뷰 텍스트 기반 레스토랑 추천 모델을 제안한다. 본 연구에서 제안된 모델은 추출된 높은 수준의 의미론적 표현과 소비자-레스토랑 상호작용을 연결하여 소비자의 선호도를 정확하고 효과적으로 예측한다. 실험 결과에 따르면 본 연구에서 제안된 추천 모델은 기존 연구에서 제안된 여러 모델에 비해 우수한 추천 성능을 보이는 것으로 나타났다.
국내에서 출원되는 특허건수는 매년 증가하고 있으나, 이러한 특허들 중 상당수는 활용되지 못하고 사장되고 있다. 2012년 국정감사 자료에 따르면, 우리나라 대학 및 공공연구기관이 보유한 특허의 약 73%가 사회적 가치창출로 연결되지 못하는 휴면특허라고 한다. 즉, 대학/연구소 또는 사업화가 어려운 개인이 소유하고 있는 특허가, 이를 필요로 하는 수요기업에 성공적으로 기술 이전되지 못하는 것을 휴면특허 증가의 주요 문제점으로 생각할 수 있다. 본 연구는 급격히 축적되는 방대한 특허 자원들 속에서, 기업의 관심분야에 적합한 지식재산을, 보다 쉽고, 효과적으로 선별할 수 있도록 하는 소셜태깅 기반의 특허 추천플랫폼을 제안한다. 제안된 시스템은 기존 특허들로부터 핵심적인 내용 및 기술 분야를 추출하여 초기 추천을 수행하고, 이후 사용자들의 태그정보가 축적되면, 사회적 지식 (social knowledge)을 추천에 함께 반영하게 된다. 이러한 연구에는 특허청에서 운영하고 있는 KIPRIS(Korea Industrial Property Rights Information Service) 시스템에서 실제 특허자료 총 1638건을 수집한 후, 현재 특허 데이터에는 존재하지 않는 가상의 태그 정보를 추가한 반가상(semi-virtual) 데이터를 구성하여 활용하였다. 제안된 시스템은 프로그래밍 언어 JAVA를 활용하여 핵심 알고리즘을 구현하였으며, 그래픽사용자 인터페이스(Graphic User Interface)에 대한 프로토타입의 설계를 수행하였다. 또한, 시나리오테스트 방식으로 시스템의 운영타당성 및 추천 효과성을 확인하였다.
대표적인 추천 시스템 방법론인 협업 필터링(Collaborative Filtering)에는 이웃기반 방법(Neighbor Methods)과 잠재 요인 모델(Latent Factor model)이라는 두 가지 접근법이 있다. 이중 행렬 분해(Matrix Factorization)를 이용하는 잠재 요인 모델은 사용자-아이템 상호작용 행렬을 두 개의 보다 낮은 차원의 직사각형 행렬로 분해하고 이들의 행렬 곱으로 아이템의 평점(Rating)을 예측한다. 평점 패턴으로부터 추출된 요인 벡터들을 통해 사용자와 아이템 속성을 포착할 수 있기 때문에 확장성, 정확도, 유연성 측면에서 이웃기반 방법보다 우수하다고 알려져 있다. 하지만 평점이 지정되지 않은 아이템에 대해서는 선호도가 다른 개개인의 다양성을 반영하지 못하는 근본적인 한계가 있고 이는 반복적이고 부정확한 추천을 초래하게 된다. 이러한 잠재요인 모델의 한계를 개선하고자 각각의 아이템 별로 사용자의 선호도를 적응적으로 학습하는 적응 심층 잠재요인 모형(Adaptive Deep Latent Factor Model; ADLFM)이 등장하였다. ADLFM은 아이템의 특징을 설명하는 텍스트인 아이템 설명(Item Description)을 입력으로 받아 사용자와 아이템의 잠재 벡터를 구하고 어텐션 스코어(Attention Score)를 활용하여 개인의 다양성을 반영할 수 있는 방법을 제시한다. 하지만 아이템 설명을 포함하는 데이터 셋을 요구하기 때문에 이 방법을 적용할 수 있는 대상이 많지 않은 즉 일반화에 있어 한계가 있다. 본 연구에서는 아이템 설명 대신 추천시스템에서 보편적으로 사용하는 아이템 ID를 입력으로 하고 Self-Attention, Multi-head attention, Multi-Conv1d 등 보다 개선된 딥러닝 모델 구조를 적용함으로써 ADLFM의 한계를 개선할 수 있는 일반화된 적응 심층 잠재요인 추천모형 G-ADLFRM을 제안한다. 다양한 도메인의 데이터셋을 가지고 입력과 모델 구조 변경에 대한 실험을 진행한 결과, 입력만 변경했을 경우 동반되는 정보손실로 인해 ADLFM 대비 MAE(Mean Absolute Error)가 소폭 높아지며 추천성능이 하락했지만, 처리할 정보량이 적어지면서 epoch 당 평균 학습속도는 대폭 향상되었다. 입력 뿐만 아니라 모델 구조까지 바꿨을 경우에는 가장 성능이 우수한 Multi-Conv1d 구조가 ADLFM과 유사한 성능을 나타내며 입력변경으로 인한 정보손실을 충분히 상쇄시킬 수 있음을 보여주었다. 결론적으로 본 논문에서 제시한 모형은 기존 ADLFM의 성능은 최대한 유지하면서 빠른 학습과 추론이 가능하고(경량화) 다양한 도메인에 적용할 수 있는(일반화) 새로운 모형임을 알 수 있다.
연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 상품 탐색 시간을 줄여주며 판매자의 매출 증대에 크게 기여한다. 이는 주문과 같은 거래의 빈도를 기반으로 생성되므로, 통계적으로 판매 확률이 높은 상품을 효과적으로 선별할 수 있다. 하지만, 판매 가능성이 높은 경우라도 신상품처럼 판매 초기에 거래 건수가 충분하지 않은 상품은 추천에서 누락될 수 있다. 연관 추천에서 누락된 상품은 이로 인해 노출 기회를 잃게 되고, 이는 거래 건수 감소로 이어져, 또 다시 추천 기회를 잃는 악순환을 겪을 수도 한다. 따라서, 충분한 거래 건수가 쌓이기 전까지 초기 매출은 일정 기간 동안 정체되는 현상을 보이는데, 의류 등과 같이 유행에 민감하거나 계절 변화에 영향을 많이 받는 상품은 이로 인해 매출에 큰 타격을 입을 수도 있다. 본 연구는 이와 같이 거래 초기의 낮은 거래 빈도로 인해 잘 드러나지 않는 상품 간의 잠재적인 연관성을 찾아 추천 기회를 확보할 수 있도록 연관 규칙을 확장하기 위한 목적으로 수행되었다. 두 상품 간에 직접적인 연관성이 나타나지 않더라도 다른 상품을 매개로 두 상품 간의 잠재적 연관성을 예측할 수 있을 것이며, 이런 연관성은 주문에서 나타나는 상품 간 상호작용으로 표현될 수 있으므로, 사회연결망 분석을 활용한 분석을 시도하였다. 사회연결망 분석기법을 통해 각 상품의 속성과 두 상품 간 경로의 특성을 추출하고 회귀분석을 실시하여, 두 상품 간 경로의 최단 거리 및 경로의 개수, 각 상품이 얼마나 많은 상품과 연관성을 갖는지, 두 상품의 분류 카테고리가 어느 정도 일치하는지가 두 상품 간의 잠재적 연관성에 미친다는 것을 확인하였다. 모형의 성능을 평가하기 위해, 일정 기간의 주문 데이터로부터 연결망을 구성하고, 이후 10일 간 생성될 상품 간 연관성을 예측하는 실험을 진행하였다. 실험 결과는 모형을 적용하지 않는 경우보다 제안 모형을 활용할 때 훨씬 많은 연관성을 찾을 수 있음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.