• 제목/요약/키워드: Recommendation systems

검색결과 839건 처리시간 0.023초

Applying Consistency-Based Trust Definition to Collaborative Filtering

  • Kim, Hyoung-Do
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제3권4호
    • /
    • pp.366-375
    • /
    • 2009
  • In collaborative filtering, many neighbors are needed to improve the quality and stability of the recommendation. The quality may not be good mainly due to the high similarity between two users not guaranteeing the same preference for products considered for recommendation. This paper proposes a consistency definition, rather than similarity, based on information entropy between two users to improve the recommendation. This kind of consistency between two users is then employed as a trust metric in collaborative filtering methods that select neighbors based on the metric. Empirical studies show that such collaborative filtering reduces the number of neighbors required to make the recommendation quality stable. Recommendation quality is also significantly improved.

유비쿼터스 환경에서 연관규칙과 협업필터링을 이용한 상품그룹추천 (Product-group Recommendation based on Association Rule Mining and Collaborative Filtering in Ubiquitous Computing Environment)

  • 김재경;오희영;권오병
    • 한국IT서비스학회지
    • /
    • 제6권2호
    • /
    • pp.113-123
    • /
    • 2007
  • In ubiquitous computing environment such as ubiquitous marketplace (u-market), there is a need of providing context-based personalization service while considering the nomadic user preference and corresponding requirements. To do so, the recommendation systems should deal with the tremendous amount of context data. Hence, the purpose of this paper is to propose a novel recommendation method which provides the products-group list of the customers in u-market based on the shopping intention and preferences. We have developed FREPIRS(FREquent Purchased Item-sets Recommendation Service), which makes recommendation listof product-group, not individual product. Collaborative filtering and apriori algorithm are adopted in FREPIRS to build product-group.

추천 다양화 방법을 적용한 콜드 아이템 추천 정확도 향상 (Improved Cold Item Recommendation Accuracy by Applying an Recommendation Diversification Method)

  • 한정규;천세진
    • 한국멀티미디어학회논문지
    • /
    • 제25권8호
    • /
    • pp.1242-1250
    • /
    • 2022
  • When recommending cold items that do not have user-item interactions to users, even we adopt state-of-the-arts algorithms, the predicted information of cold items tends to have lower accuracy compared to warm items which have enough user-item interactions. The lack of information makes for recommender systems to recommend monotonic items which have a few top popular contents matched to user preferences. As a result, under-diversified items have a negative impact on not only recommendation diversity but also on recommendation accuracy when recommending cold items. To address the problem, we adopt a diversification algorithm which tries to make distributions of accumulated contents embedding of the two items groups, recommended items and the items in the target user's already interacted items, similar. Evaluation on a real world data set CiteULike shows that the proposed method improves not only the diversity but also the accuracy of cold item recommendation.

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • 제20권3호
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.

클릭스트림 데이터를 활용한 전자상거래에서 상품추천이 고객 행동에 미치는 영향 분석

  • 이홍주
    • 한국경영정보학회:학술대회논문집
    • /
    • 한국경영정보학회 2008년도 춘계학술대회
    • /
    • pp.135-140
    • /
    • 2008
  • Studies of recommender systems have focused on improving their performance in terms of error rates between the actual and predicted preference values. Also, many studies have been conducted to investigate the relationships between customer information processing and the characteristics of recommender systems via surveys and web-based experiments. However, the actual impact of recommendation on product pages for customer browsing behavior and decision-making in the commercial environment has not, to the best of our knowledge, been investigated with actual clickstream data. The principal objective of this research is to assess the effects of product recommendation on customer behavior in e-Commerce, using actual clickstream data. For this purpose, we utilized an online bookstore's clickstream data prior to and after the web site renovation of the store. We compared the recommendation effects on customer behavior with the data. From these comparisons, we determined that the relevant recommendations in product pages have positive relationships with the acquisition of customer attention and elaboration. Additionally, the placing of recommended items in shopping cart is positively related to suggesting the relevant recommendations. However, the frequencies at which the recommended items were purchased did not differ prior to and after the renovation of the site.

  • PDF

Enhancing Music Recommendation Systems Through Emotion Recognition and User Behavior Analysis

  • Qi Zhang
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권5호
    • /
    • pp.177-187
    • /
    • 2024
  • 요약 배경: 기존 음악 추천 시스템은 가사의 의도된 감정과 사용자가 실제로 느끼는 감정 사이의 불일치를 충분히 고려하지 않았다. 모델: 본 연구에서는 LDA 모델을 활용하여 가사와 사용자 댓글의 주제 벡터를 생성하고, 시간 감쇠 효과와 재생 횟수를 반영한 사용자 행동 궤적과 통계 특성을 결합하여 사용자 선호도 모델을 구축했다. 결과: 실증 분석 결과, 제안 모델이 가사만 활용한 기존 모델보다 높은 정확도로 음악을 추천했다. 시사점: 본 연구는 감정 인식과 사용자 행동 분석을 통합하여 개인화된 음악 추천 시스템을 개선하는 새로운 방법론을 제시한다.

선호도 추정모형과 협업 필터링기법을 이용한 고객추천시스템 (Customer Recommendation Using Customer Preference Estimation Model and Collaborative Filtering)

  • 신택수;장근녕;박유진
    • 지능정보연구
    • /
    • 제12권4호
    • /
    • pp.1-14
    • /
    • 2006
  • 본 연구는 상품추천을 위해 필요한 고객 선호도 추정모형(Customer Preference Estimation Model)을 제안하고, 이러한 선호도 추정결과에 따른 선호도 정보를 이용하여 궁극적으로 상품추천의 성과를 제고시키기 위한 방법을 제시하였다. 즉, 제품에 대한 고객 선호 영향요인들과 고객 선호도와의 관계를 모형화 함으로써 고객 선호도를 보다 더 정확히 추정할 수 있는 새로운 선호도 추정모형을 제안하였다. 이 제안모형은 선호도 영향요인들의 상대적인 가중치를 선호도 최적화 학습을 통해 도출함으로써, 보다 정확한 선호도 측정을 가능하게 해 준다. 한편, 이 모형의 타당성을 검증하기 위해서 본 연구에서는 가상서점 고객들을 대상으로 고객 선호도 정보를 수집한 후, 본 제안모형을 적용했을 때의 협업 필터링의 추천성과와 사전가중치 부여방식인 기존 선호도 계산식을 이용했을 경우의 추천성과를 비교 분석하였다. 이에 대한 실증분석 결과는 본 연구에서 제안한 선호도 추정모형을 적용했을 때의 협업 필터링의 성과가 기존 선호도 계산방식을 적용했을 때의 협업 필터링의 성과보다 더 우수한 것으로 나타났다.

  • PDF

도서 정보 및 본문 텍스트 통합 마이닝 기반 사용자 맞춤형 도서 큐레이션 시스템 (Personalized Book Curation System based on Integrated Mining of Book Details and Body Texts)

  • 안희정;김기원;김승훈
    • Journal of Information Technology Applications and Management
    • /
    • 제24권1호
    • /
    • pp.33-43
    • /
    • 2017
  • The content curation service through big data analysis is receiving great attention in various content fields, such as film, game, music, and book. This service recommends personalized contents to the corresponding user based on user's preferences. The existing book curation systems recommended books to users by using bibliographic citation, user profile or user log data. However, these systems are difficult to recommend books related to character names or spatio-temporal information in text contents. Therefore, in this paper, we suggest a personalized book curation system based on integrated mining of a book. The proposed system consists of mining system, recommendation system, and visualization system. The mining system analyzes book text, user information or profile, and SNS data. The recommendation system recommends personalized books for users based on the analysed data in the mining system. This system can recommend related books using based on book keywords even if there is no user information like new customer. The visualization system visualizes book bibliographic information, mining data such as keyword, characters, character relations, and book recommendation results. In addition, this paper also includes the design and implementation of the proposed mining and recommendation module in the system. The proposed system is expected to broaden users' selection of books and encourage balanced consumption of book contents.

인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발 (Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.177-191
    • /
    • 2003
  • 상품추천시스템은 고객들에게 추천 상품 리스트를 만들어 고객들이 구매 가능성이 있는 상품을 쉽게 찾도록 도와주는 개인화 된 정보필터링 기술이다 협업 필터링(collaborative filtering)이 가장 성공적인 상품추천 기법으로 알려져 있으며 많이 이용되고 있다. 그러나, 인터넷 쇼핑몰에서 관리하는 상품과 고객의 수가 급속히 증가하면서 협업필터링에 기반 한 상품추천 시스템은 입력데이터의 희박성(Sparsity) 문제와 시스템 확장성(Scalability) 문제가 노출되고 있다. 따라서 본 연구에서는 협업필터링 기반 상품추천시스템의 상품추천 효과 및 성능을 개선하기 위해 웹 마이닝과 군집분석 기법에 기반을 둔 개인별 상품추천 방법론을 개발한다. 또한 실제 인터넷 쇼핑몰에서 개인별로 상품을 추천할 때 개발된 상품추천 방법론을 적용하여 다른 기존 상품추천 방법론과 실험적으로 비교함으로써 개발 방법론의 효과 및 성능을 검증한다.

  • PDF

시맨틱웹 기반 개인 맞춤형 도서 추천 시스템 (Personalized Book Recommendation System based on Semantic Web)

  • 김진천
    • 한국정보통신학회논문지
    • /
    • 제15권5호
    • /
    • pp.1097-1104
    • /
    • 2011
  • 본 논문에서는 개인 맞춤 도서 추천을 위한 시맨틱웹 접근방법을 제안한다. 제안방법은 콘텐츠 기반 추천을 이용하면서도 사용자가 모든 도서 검색 시스템에 자신의 관심분야를 등록해야 하는 단점을 개선한다. 제안방법은 다양한 서지정보제공자의 도서분류 온톨로지상에서 자신의 관심분야를 등록할 수 있게 함으로써 사용자 프로파일을 공유한다. 또한 사용자 프로파일 관리 시스템은 제안방법에 의해 작성된 사용자 프로파일을 관리하고, 사용자의 관심분야와 도서분류 온톨로지상의 각 개념과의 유사성을 분석하는 기능을 제공한다. 제안방법은 사용자 프로파일의 공유를 통해 기존 키워드 검색에 비해 더 향상된 효율성을 제공한다.