• Title/Summary/Keyword: Recommendation system

Search Result 1,704, Processing Time 0.025 seconds

The Effect of Self-Construal Type, Mobile Product Recommendation System Type and Fashion Product Type on Purchase Intention in Moblie Shopping Environment (자기해석유형과 모바일 상품추천유형, 패션제품유형이 구매의도에 미치는 영향)

  • Jeon, Tae June;Hwang, Sun Jin;Choi, Dong Eun
    • Journal of Fashion Business
    • /
    • v.25 no.5
    • /
    • pp.25-37
    • /
    • 2021
  • As the online shopping market grows, channels in the mobile shopping environment have become increasingly diverse as a wide variety of products are introduced every day. This study investigated the effects of the self-construal type, mobile product recommendation system type, and fashion product type on purchase intention. The experimental design of this study was a 2 (self-construal type: independent vs. interdependent) × 2 (product recommendation system: bestseller vs. content-based) × 2 (fashion product type: utilitarian vs. hedonic) 3-way mixed ANOVA. Women (n = 387) in their 20 to 30s residing in Seoul and the Gyeonggi area participated in the study. The data were analyzed with the SPSS 24 program and 3-way ANOVA and simple main effects analyses were conducted. The results were as follows. First, self-construal, product recommendation, and fashion product types had a statistically significant impact on purchase intention. Second, fashion product and consumers' self-construal types had significant interaction effects on purchase intention. Finally, product recommendation and fashion product and self-construal types showed significant 3-way interaction effects on purchase intention. The study confirmed an interaction between the self-construal, type of product recommendation system, and the type of fashion product used in influencing purchase intention.

A product recommendation system based on adjacency data (인접성 데이터를 이용한 추천시스템)

  • Kim, Jin-Hwa;Byeon, Hyeon-Su
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.1
    • /
    • pp.19-27
    • /
    • 2011
  • Recommendation systems are developed to overcome the problems of selection and to promote intention to use. In this study, we propose a recommendation system using adjacency data according to user's behavior over time. For this, the product adjacencies are identified from the adjacency matrix based on graph theory. This research finds that there is a trend in the users' behavior over time though product adjacency fluctuates over time. The system is tested on its usability. The tests show that implementing this recommendation system increases users' intention to purchase and reduces the search time.

A Context Aware DVB Recommendation System based on Real-time Adjusted User Profiles (실시간 사용자 프로파일을 반영한 상황인지 DVB 방송 추천 시스템)

  • Park, Young-Min;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.12
    • /
    • pp.1244-1248
    • /
    • 2010
  • The previous study of Digital Broadcasting Recommendation system is based on user explicit profiling information. But user profile is always changing and the exact extraction of user profile is very important in recommendation system like Digital TV using many user interactions. This paper is studied of realtime user profiles aggregation through user remote controller input and matching this profiles with contents meta-data like contents genre information, event information, content viewing time. It is not used commercial database system and network communication solution considering embedded system hardware restriction. And it is considered people want different content genre based on watching time. From the results of this paper, there are improvement of user satisfaction of contents recommendation.

A Study of IPTV-VOD Program Recommendation System using Collaborative Filtering (협업 필터링을 이용한 IPTV-VOD 프로그램 추천 시스템에 대한 연구)

  • Sun, Chul-Yong;Kang, Yong-Jin;Park, Kyu-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1453-1462
    • /
    • 2010
  • In this paper, a new program recommendation system is proposed to recommend user preferred VOD program in IPTV environment. A proposed system is implemented with collaborative filtering method. For a user profile which describes user program preference, a program preference, sub-genre preference, and US(user similarity) weight of the user neighborhood is averaged and updated every week. In order to evaluate system performance, real 24-weeks cable TV watching data provided by Nilson Research Corp. are modified to fit for IPTV broadcasting environment and the simulation result shows quite comparative quality of recommendation. The experimental results optimum performance when user similarity based weighting, five person per group and five recommendation programs are used.

Improved Movie Recommendation System based-on Personal Propensity and Collaborative Filtering (개인성향과 협업 필터링을 이용한 개선된 영화 추천 시스템)

  • Park, Doo-Soon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.2 no.11
    • /
    • pp.475-482
    • /
    • 2013
  • Several approaches to recommendation systems have been studied. One of the most successful technologies for building personalization and recommendation systems is collaborative filtering, which is a technique that provides a process of filtering customer information based on such information profiles. Collaborative filtering systems, however, have a sparsity if there is not enough data to recommend. In this paper, we suggest a movie recommendation system, based on the weighted personal propensity and the collaborating filtering system, in order to provide a solution to such sparsity. Furthermore, we assess the system's applicability by using the open database MovieLens, and present a weighted personal propensity framework for improvement in the performance of recommender systems. We successfully come up with a movie recommendation system through the optimal personalization factors.

A Recommendation Procedure for Group Users in Online Communities

  • O Hui-Yeong;Kim Hye-Gyeong;Kim Jae-Gyeong
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.344-353
    • /
    • 2006
  • Nowadays many people participate in online communities for information sharing. But most recommender systems are designed for personalization of individual user, so it is necessary to develop a recommendation procedure for group users, such as participants in online communities. This paper proposes a group recommender system to recommend books for group users in online communities. For such a purpose, we suggest a group recommendation procedure consisting of two phases. The first phase is to generate recommendation list for 'big user' using collaborative filtering, and the second phase is to remove irrelevant books among previous list reflecting the preference of each individual user. The procedure is explained step by step with an illustrative example. And this procedure can potentially be applied to other domains, such as music, movies and etc.

  • PDF

A study on Recommendation Service System for the Customized Convergence Wellness Contents (맞춤형 융복합 웰니스 콘텐츠를 위한 추천 서비스 시스템에 대한 연구)

  • Lee, Wonjin
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.322-329
    • /
    • 2017
  • Recently, the importance of personalized healthcare(wellness) services is increasing in the era of the 4th Industrial Revolution. However, the authoring of wellness contents fused with variety of contents and the study of the system which provides the customized recommendation are insufficient. In this paper, we proposes the recommendation service system for the customized convergence wellness contents. The proposed system makes to the wellness contents by the existing cultural/tourism/leisure contents and recommends the customized wellness contents based on a user's profile and the situation information such as location and weather. The proposed systems is expected to contribute to designing the innovative and new service models for the tailored wellness content.

Recommendation system using Deep Autoencoder for Tensor data

  • Park, Jina;Yong, Hwan-Seung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.8
    • /
    • pp.87-93
    • /
    • 2019
  • These days, as interest in the recommendation system with deep learning is increasing, a number of related studies to develop a performance for collaborative filtering through autoencoder, a state-of-the-art deep learning neural network architecture has advanced considerably. The purpose of this study is to propose autoencoder which is used by the recommendation system to predict ratings, and we added more hidden layers to the original architecture of autoencoder so that we implemented deep autoencoder with 3 to 5 hidden layers for much deeper architecture. In this paper, therefore we make a comparison between the performance of them. In this research, we use 2-dimensional arrays and 3-dimensional tensor as the input dataset. As a result, we found a correlation between matrix entry of the 3-dimensional dataset such as item-time and user-time and also figured out that deep autoencoder with extra hidden layers generalized even better performance than autoencoder.

Information Recommendation in Mobile Environment using a Multi-Criteria Decision Making (다기준 의사 결정 방법을 이용한 모바일 환경에서의 정보추천)

  • Park, Han-Saem;Park, Moon-Hee;Cho, Sung-Bae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.306-310
    • /
    • 2008
  • Since the preference for information recommendation service can change according to the context, we should know the user context before providing information recommendation. This paper proposes recommender system that considers multi-user preference in mobile environment and attempted to apply it to restaurant recommendation. To model the preference of individual users in mobile environment, we have used Bayesian network, and restaurant recommendation mostly should consider not an individual user but several users, so this paper has used AHP of multi-criteria decision making process to obtain the preference of several users based on one of individual users. For experiments, we conducted recommendation in 10 different situations, and finally, we confirmed that the proposed system was evaluated as a good one using a usability test of SUS.

A Study on the Job Recommender System Using User Preference Information (사용자의 선호도 정보를 활용한 직무 추천 시스템 연구)

  • Li, Qinglong;Jeon, Sanghong;Lee, Changjae;Kim, Jae Kyeong
    • Journal of Information Technology Services
    • /
    • v.20 no.3
    • /
    • pp.57-73
    • /
    • 2021
  • Recently, online job websites have been activated as unemployment problems have emerged as social problems and demand for job openings has increased. However, while the online job platform market is growing, users have difficulty choosing their jobs. When users apply for a job on online job websites, they check various information such as job contents and recruitment conditions to understand the details of the job. When users choose a job, they focus on various details related to the job rather than simply viewing and supporting the job title. However, existing online job websites usually recommend jobs using only quantitative preference information such as ratings. However, if recommendation services are provided using only quantitative information, the recommendation performance is constantly deteriorating. Therefore, job recommendation services should provide personalized services using various information about the job. This study proposes a recommended methodology that improves recommendation performance by elaborating on qualitative preference information, such as details about the job. To this end, this study performs a topic modeling analysis on the job content of the user profile. Also, we apply LDA techniques to explore topics from job content and extract qualitative preferences. Experiments show that the proposed recommendation methodology has better recommendation performance compared to the traditional recommendation methodology.