1 |
P. Covington, J. Adams, & E. Sargin, "Deep neural networks for youtube recommendations". In Proceedings of the 10th ACM Conference on Recommender Systems, pp. 191-198. ACM. 2016.
|
2 |
N. Jones. "Computer science: The learning machines". Nature News, 505(7482), 146, 2014.
DOI
|
3 |
MovieLens. http://grouplens.org/datasets/movielens/ (accessed Jan., 08, 2019).
|
4 |
BigTensor, https://datalab.snu.ac.kr/bigtensor/ (access ed Jan., 08, 2019).
|
5 |
Yelp, http://www.yelp.com/dataset_challenge/ (access ed Jan., 08, 2019).
|
6 |
R. Salakhutdinov, A. Mnih, & G. Hinton, "Restricted Boltzmann machines for collaborative filtering". In Proceedings of the 24th international conference on Machine learning pp. 791-798, ACM, 2007.
|
7 |
J. B. Schafer, D. Frankowski, J. Herlocker, & S Sen. "Collaborative filtering recommender systems." In The adaptive web. Springer, Berlin, Heidelberg. pp. 291-324, 2007.
|
8 |
G. Adomavicius, & A. Tuzhilin, "Context-aware recommender systems". In Recommender systems handbook, Springer, Boston, MA, pp. 217-253, 2011.
|
9 |
Y. Koren, R. Bell, & C. Volinsky, "Matrix factorization techniques for recommender systems". Computer, (8), pp. 30-37, 2009.
|
10 |
Y. LeCun, Y. Bengio, & G. Hinton, "Deep learning". nature, 521(7553), 436. 2015.
DOI
|
11 |
J. Bennett, & S. Lanning, "The netflix prize". In Proceedings of KDD cup and workshop, pp. 35, 2007.
|
12 |
C. A. Gomez-Uribe, & N. Hunt, "The netflix recommender system: Algorithms, business value, and innovation". ACM Transactions on Management Information Systems (TMIS), 6(4), 13. 2016.
|