International journal of advanced smart convergence
/
제12권4호
/
pp.202-207
/
2023
In this paper, we discuss the design and implementation of a recommendation platform actually built in the field. We survey deep learning-based recommendation models that are effective in reflecting individual user characteristics. The recently proposed RNN-based sequential recommendation models reflect individual user characteristics well. The recommendation platform we proposed has an architecture that can collect, store, and process big data from a company's commercial services. Our recommendation platform provides service providers with intuitive tools to evaluate and apply timely optimized recommendation models. In the model evaluation we performed, RNN-based sequential recommendation models showed high scores.
Purpose: The purpose of this study is to collect and analyze a large amount of data from online ticket distribution platforms that offer multiple airlines and different routes so that they can improve their ticket distribution marketing strategies and provide services that are more suitable for consumer's needs. The results of this study will help airlines improve the quality of their online platform services to provide more benefits and convenience by providing access to multiple airlines and routes around the world on one platform. Research design, data and methodology: For the study, 200 people completed the survey between May 1 and June 15, 2024, of which 191 copies were used in the study. Results: The hypothesis testing results of this study showed that among the components of the recommendation algorithm, decision comport, novelty, and evoked interest recurrence had a positive effect on perceived recommendation quality, but curiosity did not have a positive effect on recommendation quality. The perceived recommendation quality of the online platform positively influenced recommendation satisfaction, and the higher the perceived recommendation quality, the higher the intention to continue the relationship. Finally, higher recommendation satisfaction was associated with higher relationship continuation intention. Conclusion: it's important to continue researching online ticketing platforms. Online platforms will also need to be systems that use technology and data analytics to provide a better user experience and more benefits.
A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.
Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.
도서 취향을 고려하여 도서를 추천해주는 도서 추천 시스템은 사용자의 독서 경험과 독서에 대한 인식 개선에 효과적이다. 축적된 사용자 평점 기록이 상대적으로 적은 도서의 경우 추천 정확도에 한계가 나타난다. 본 연구에서는 상대적으로 풍부한 사용자 평점 데이터를 가진 영화 평점 정보를 이용하여 사용자에게 맞춤형 도서를 추천하는 추천 시스템을 제안한다. 제안하는 방법을 통해 도서 추천의 정확도를 높이고 보다 다양한 종류의 추천을 수행하는데 효과적임을 보였다. 영화 평점 데이터를 활용한 도서추천 시스템은 도서 분야 외 타 미디어 플랫폼의 데이터를 도서추천에 활용하는 의미 있는 시도가 될 것으로 예상한다.
본 연구에서는 온라인 플랫폼 뮤지컬 관람 방식의 만족도에 영향을 미치는 요인을 알아보고 그 요인들이 온라인 플랫폼을 통한 뮤지컬 관람의 추천 의도 및 재관람 의도에 미치는 영향을 알아보았다. 또한, 조사대상자의 뮤지컬에 대한 관여도가 온라인 플랫폼 뮤지컬 관람의 만족도와 추천 의도 및 재관람 의도 사이에서 미치는 영향을 분석하였다. 독립변수인 온라인 플랫폼 뮤지컬의 만족도는 영상 품질, 편의성, 경제성, 상호작용성 등으로 구분하고 종속변수는 온라인 플랫폼 뮤지컬의 추천 의도, 재관람 의도로 구분하였으며, 뮤지컬에 대한 관여도를 조절변수로 하여 총 20개의 가설을 설정하였다. 온라인 플랫폼을 통한 뮤지컬 관람 경험이 있는 관객 1,454명을 대상으로 2021년 8월 28일부터 9월 7일까지 온라인 설문조사를 실시하여 총 1418명의 답변을 유효 표본으로 사용하였다. AMOS Ver. 18.0.0을 이용한 확인적 요인분석으로 온라인 플랫폼 뮤지컬 만족도에 영향을 미치는 요인을 분석하였고 SPSS를 통한 회귀분석으로 각 독립변수가 종속변수에 미치는 영향과 독립변수와 종속변수 사이에서 갖는 조절변수의 조절 효과를 분석하였다. 분석 결과, 온라인 플랫폼 뮤지컬의 만족도를 구성하는 요인은 표준화 경로계수가 편의성 > 영상 품질 > 경제성 > 상호작용성 순으로 나타나 온라인 뮤지컬 관람 방식이 새로운 공연예술의 관람 패러다임으로 정착하기 위해 가장 먼저 중시해야 할 만족 요인으로 편의성과 영상 품질 요인이 제시되었다. 한편, 온라인 플랫폼 뮤지컬 관람의 만족도는 모든 만족 요인의 경로에서 온라인 플랫폼 뮤지컬 관람 추천 의도 및 재관람 의도에 정(+)의 영향을 미치는 것으로 나타났다. 또한, 온라인 플랫폼 뮤지컬 관람 만족도와 추천 의도 및 재관람 의도 사이에서 뮤지컬에 대한 관객의 관여도가 갖는 조절 효과는 영상품질과 추천 의도의 사이에서만 유의한 영향을 미치는 것으로 나타났다. 이는 뮤지컬에 대한 관여도가 높은 관객은 온라인 플랫폼 뮤지컬의 영상 품질에 대한 만족도가 높아야만 주변에 추천할 의향을 가진다고 해석된다. 특히 중요한 점은 온라인 플랫폼 뮤지컬 관람의 만족도에는 편의성 요인이 가장 큰 영향을 미치는 것으로 나타났지만, 온라인 플랫폼 뮤지컬의 추천 의도와 재관람 의도에는 영상 품질 요인이 가장 큰 영향을 미치는 것으로 나타났다는 점이다. 이러한 결과는 현전성이 특징인 뮤지컬을 온라인 플랫폼을 통해 관람하는 것에는 편의성이 가장 큰 가치가 된다는 것, 즉 신체적 현전을 통한 현전성을 느낄 수 없는 조건에서는 온라인 플랫폼의 편의성이 주된 만족도 요인으로 작용함을 나타내며, 온라인 플랫폼을 통해 뮤지컬을 관람한 관객은 우선적으로 영상 품질의 질적 수준에 만족하였을 때 추천 의도와 재관람 의도를 가진다는 것을 시사한다.
The development of platform service based on the information and communication technology has revolutionized patterns of commercial transactions, driving the growth of global economy. Furthermore, the radical advancement of artificial intelligence(AI) presents the huge potential to innovate almost all the industrial and economic activities. Given these technological developments, the goal of this paper is to investigate AI's impact on the platform service innovation as well as its influence on the business performance. For the goal, this paper presents the review of the types of service innovation, the nature of platform services, and technological characteristics of leading AI technologies, such as chatbot and recommendation system. As an empirical study, this paper performs a multiple case study of Kakao Group which is the leading mobile platform service with the most advanced AI in Korea. To understand the role and effect of AI on Kakao platform service, this study investigated three cases, including chatbot agent of Kakao Bank, Smart Call service of Kakao Taxi, and music recommendation system of Kakao Mellon. The analysis results of the case study show that AI initiated innovations in platform service concepts, service delivery, and customer interface, all of which lead to a significant decrease in the transaction costs and the personalization of services. Finally, for the successful development of AI, this research emphasizes the significance of the accumulation of customer and operational data, the AI human capital, and the design of R&D organization.
전공서적 이용실태조사에 따르면, 대학생들은 한 학기당 평균적으로 6.4권의 전공서적을 구매하고 이를 위해 9.4만원을 지출한다. 그러나 이렇게 구입한 전공서적의 절반 가까이는 사용되지 않고 방치되고 있다. 그래서 많은 학생들이 정가를 주고 새 책을 구입하기 보다는 중고책 거래를 통해 전공서적을 구하고 있다. 기존의 중고 전공서적 거래를 지원하는 플랫폼들은 판매를 위한 기본 기능들은 제공하고 있지만, 전공별 교재 추천, 참고도서 추천 기능 등이 제공되지 못하고 있다. 본 연구에서 지역성을 반영한 전공별 교재 추천, 참고도서 추천, 위탁 거래 기능 등이 제공되는 중고 전공서적 거래 플랫폼 BookCue를 개발하였다. 본 플랫폼을 이용함으로써 방치된 전공서적들의 거래 활성화를 통한 대학생들의 교재구매비 경감과 환경보전에 기여할 수 있을 것으로 기대된다. 향후 본 플랫폼은 전공서적뿐만 아니라 대학생들을 위한 지역 내 다양한 물품을 거래하는 플랫폼으로 확대될 수 있을 것이다.
OTT(Over The Top) 플랫폼은 개인화된 추천 서비스가 이용자들을 플랫폼에 더 오래 머물게 하고, 더 자주 방문하게 한다는 점에서 차별적 경쟁우위 특성을 강화하기 위해 노력하고 있다. 본 연구에서는 개인화된 추천 서비스의 특성을 추천 정확성과 추천 다양성, 추천 신기성의 3가지로 구분하고, 각 특성이 이용자가 추천 서비스에 대해 인지하는 유용성에 영향을 미치고, 기대충족으로 이어지는 연구모형을 제안하였다. 넷플릭스를 정기구독 결제하는 20, 30대 300명을 대상으로 온라인 설문조사를 진행한 결과, 추천 서비스의 정확성과 다양성, 신기성이 높았을 때 지각된 유용성이 높아짐을 확인하였다. 높은 지각된 유용성은 넷플릭스 이용 전후의 기대충족으로 이어진다는 점 역시 확인하였다. 도출된 연구 결과는 개인화된 추천 서비스 평가에서 이용자 경험 측면의 중요성과 추천 서비스 품질 개선 방안에 대한 시사점을 제공할 수 있을 것이다.
현재의 유튜브는 사용자가 실제 소비한 콘텐츠를 기반으로 사용자에게 유사한 콘텐츠를 추천한다. 이런 알고리즘의 특성으로 인하여 사용자는 비슷한 분야의 콘텐츠는 잘 추천받지만 소비 한적이 없는 분야의 콘텐츠는 추천 받기가 어렵다. 폭넓게 영상을 추천 받는데 있어서 한계가 있다. 크라우드 소싱을 활용하여 이 문제를 해결하고자 한다. 유튜브를 사용하는 대중들의 직접적인 참여를 통하여 다양한 채널을 추천받을 수 있는 플랫폼을 제안한다. 사용자는 다양한 채널을 추천받고 채널 토론 방에서 사람들과 소통할 수 있으며 동시에 채널을 추천하여 수익을 창출할 수 있다. 본 플랫폼이 다양한 크라우드 소싱 기반의 추천 플랫폼에서 활용될 수 있기를 기대한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.