• Title/Summary/Keyword: Recommendation algorithm

Search Result 417, Processing Time 0.024 seconds

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Contents Recommendation Scheme Applying Non-preference Separately (비선호 분리 적용 콘텐츠 추천 방안)

  • Yoon Joo-young;Lee Kil-hung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.19 no.3
    • /
    • pp.221-232
    • /
    • 2023
  • In this paper, we propose a recommendation system based on the latent factor model using matrix factorization, which is one of the most commonly used collaborative filtering algorithms for recommendation systems. In particular, by introducing the concept of creating a list of recommended content and a list of non-preferred recommended content, and removing the non-preferred recommended content from the list of recommended content, we propose a method to ultimately increase the satisfaction. The experiment confirmed that using a separate list of non-preferred content to find non-preferred content increased precision by 135%, accuracy by 149%, and F1 score by 72% compared to using the existing recommendation list. In addition, assuming that users do not view non-preferred content through the proposed algorithm, the average evaluation score of a specific user used in the experiment increased by about 35%, from 2.55 to 3.44, thereby increasing user satisfaction. It has been confirmed that this algorithm is more effective than the algorithms used in existing recommendation systems.

Recommendation Algorithm by Item Classification Using Preference Difference Metric (Preference Difference Metric을 이용한 아이템 분류방식의 추천알고리즘)

  • Park, Chan-Soo;Hwang, Taegyu;Hong, Junghwa;Kim, Sung Kwon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.2
    • /
    • pp.121-125
    • /
    • 2015
  • In recent years, research on collaborative filtering-based recommendation systems emphasized the accuracy of rating predictions, and this has led to an increase in computation time. As a result, such systems have divergeded from the original purpose of making quick recommendations. In this paper, we propose a recommendation algorithm that uses a Preference Difference Metric to reduce the computation time and to maintain adequate performance. The system recommends items according to their preference classification.

An E-Mail Recommendation System using Semi-Automatic Method (반자동 방식을 이용한 이메일 추천 시스템)

  • Jeong, Ok-Ran;Jo, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.604-607
    • /
    • 2003
  • Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.

  • PDF

A Study on Recommendation System Using Data Mining Techniques for Large-sized Music Contents (대용량 음악콘텐츠 환경에서의 데이터마이닝 기법을 활용한 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.2
    • /
    • pp.89-104
    • /
    • 2007
  • This research attempts to give a personalized recommendation framework in large-sized music contents environment. Despite of existing studios and commercial contents for recommendation systems, large online shopping malls are still looking for a recommendation system that can serve personalized recommendation and handle large data in real-time. This research utilizes data mining technologies and new pattern matching algorithm. A clustering technique is used to get dynamic user segmentations using user preference to contents categories. Then a sequential pattern mining technique is used to extract contents access patterns in the user segmentations. And the recommendation is given by our recommendation algorithm using user contents preference history and contents access patterns of the segment. In the framework, preprocessing and data transformation and transition are implemented on DBMS. The proposed system is implemented to show that the framework is feasible. In the experiment using real-world large data, personalized recommendation is given in almost real-time and shows acceptable correctness.

An Collaborative Filtering Method based on Associative Cluster Optimization for Recommendation System (추천시스템을 위한 연관군집 최적화 기반 협력적 필터링 방법)

  • Lee, Hyun Jin;Jee, Tae Chang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.6 no.3
    • /
    • pp.19-29
    • /
    • 2010
  • A marketing model is changed from a customer acquisition to customer retention and it is being moved to a way that enhances the quality of customer interaction to add value to our customers. Such personalization is emerging from this background. The Web site is accelerate the adoption of a personalization, and in contrast to the rapid growth of data, quantitative analytical experience is required. For the automated analysis of large amounts of data and the results must be passed in real time of personalization has been interested in technical problems. A recommendation algorithm is an algorithm for the implementation of personalization, which predict whether the customer preferences and purchasing using the database with new customers interested or likely to purchase. As recommended number of users increases, the algorithm increases recommendation time is the problem. In this paper, to solve this problem, a recommendation system based on clustering and dimensionality reduction is proposed. First, clusters customers with such an orientation, then shrink the dimensions of the relationship between customers to low dimensional space. Because finding neighbors for recommendations is performed at low dimensional space, the computation time is greatly reduced.

Design and Implementation of an Optimal 3D Flight Path Recommendation System for Unmanned Aerial Vehicles (무인항공기를 위한 최적의 3차원 비행경로 추천 시스템 설계 및 구현)

  • Kim, Hee Ju;Lee, Won Jin;Lee, Jae Dong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1346-1357
    • /
    • 2021
  • The drone technology, which is receiving a lot of attention due to the 4th industrial revolution, requires an Unmanned Aerial Vehicles'(UAVs) flight path search algorithm for automatic operation and driver assistance. Various studies related to flight path prediction and recommendation algorithms are being actively conducted, and many studies using the A-Star algorithm are typically performed. In this paper, we propose an Optimal 3D Flight Path Recommendation System for unmanned aerial vehicles. The proposed system was implemented and simulated in Unity 3D, and by indicating the meaning of the route using three different colors, such as planned route, the recommended route, and the current route were compared each other. And obstacle response experiments were conducted to cope with bad weather. It is expected that the proposed system will provide an improved user experience compared to the existing system through accurate and real-time adaptive path prediction in a 3D mixed reality environment.

Auxiliary Stacked Denoising Autoencoder based Collaborative Filtering Recommendation

  • Mu, Ruihui;Zeng, Xiaoqin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2310-2332
    • /
    • 2020
  • In recent years, deep learning techniques have achieved tremendous successes in natural language processing, speech recognition and image processing. Collaborative filtering(CF) recommendation is one of widely used methods and has significant effects in implementing the new recommendation function, but it also has limitations in dealing with the problem of poor scalability, cold start and data sparsity, etc. Combining the traditional recommendation algorithm with the deep learning model has brought great opportunity for the construction of a new recommender system. In this paper, we propose a novel collaborative recommendation model based on auxiliary stacked denoising autoencoder(ASDAE), the model learns effective the preferences of users from auxiliary information. Firstly, we integrate auxiliary information with rating information. Then, we design a stacked denoising autoencoder based collaborative recommendation model to learn the preferences of users from auxiliary information and rating information. Finally, we conduct comprehensive experiments on three real datasets to compare our proposed model with state-of-the-art methods. Experimental results demonstrate that our proposed model is superior to other recommendation methods.

Effectiveness of Recommendation using Customer Sensibility in On-line Shopping Mall (온라인 쇼핑몰에서 고객의 감성을 활용한 추천 효과)

  • Lim, Chee-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.3
    • /
    • pp.58-64
    • /
    • 2005
  • Customer sensibility based recommendation agent system was developed to tailor to the customer the suggestion of goods and the description of store catalog in on-line shopping mall. The recommendation agent system composed of five modules and seven services including specialized algorithm. This study was to investigate the effectiveness of the customer sensibility based recommendation agent system in on-line shopping mall. This study asked 30 male and female students to perform the task in on-line shopping mall and facilitated them questionnaires. The questionnaires were administered to subjects to measure quality precision, ease of use, support of buying, purchasing power, future intention of the system. The study revealed that good part of the subjects positively evaluated the customer sensibility based recommendation system except for ease of use. The study on usability of the recommendation agent system has need to be performed in next. This paper shows that the satisfaction and the buying power of customers may be improved by presenting customer sensibility based recommendation in on-line shopping mall.

Distribution of Air Tickets through Online Platform Recommendation Algorithms

  • Soyeon PARK
    • Journal of Distribution Science
    • /
    • v.22 no.9
    • /
    • pp.39-48
    • /
    • 2024
  • Purpose: The purpose of this study is to collect and analyze a large amount of data from online ticket distribution platforms that offer multiple airlines and different routes so that they can improve their ticket distribution marketing strategies and provide services that are more suitable for consumer's needs. The results of this study will help airlines improve the quality of their online platform services to provide more benefits and convenience by providing access to multiple airlines and routes around the world on one platform. Research design, data and methodology: For the study, 200 people completed the survey between May 1 and June 15, 2024, of which 191 copies were used in the study. Results: The hypothesis testing results of this study showed that among the components of the recommendation algorithm, decision comport, novelty, and evoked interest recurrence had a positive effect on perceived recommendation quality, but curiosity did not have a positive effect on recommendation quality. The perceived recommendation quality of the online platform positively influenced recommendation satisfaction, and the higher the perceived recommendation quality, the higher the intention to continue the relationship. Finally, higher recommendation satisfaction was associated with higher relationship continuation intention. Conclusion: it's important to continue researching online ticketing platforms. Online platforms will also need to be systems that use technology and data analytics to provide a better user experience and more benefits.