This study identifies factors of perceived risk of up-cycling fashion products and investigates perceived risk factors that influence consumers' trust, purchase intention, and recommendation intention towards upcycling fashion products. We also examine the relationship of trust, purchase intention, and recommendation intention for upcycling fashion products. A qualitative research method using a free narrative form and depth interview were used. The perceived risk from up-cycling fashion products generated 5 factor solutions: aesthetic risk, sanitary risk, social risk, performance risk, and economic risk. Next, 201 effective data were collected from a questionnaire survey and analyzed with SPSS 22.0. The results are summarized as follows. First, aesthetic risk and performance risk had a negative effect on products. Second, aesthetic risk and performance risk had negative influence on purchase intention for upcycling fashion products. Third, performance risk had a negative impact on recommendation intention for upcycling fashion products. Fourth, trust had positive effect on purchase intention and recommendation intention for upcycling fashion products. The results of the current study provides various theoretical and practical implications for marketers and retailers interested in up-cycling fashion products.
Journal of Information Technology Applications and Management
/
v.24
no.1
/
pp.169-185
/
2017
This study proposes a novel recommendation algorithm that reflects the results from trust/distrust network analysis as a solution to enhance prediction accuracy of recommender systems. The recommendation algorithm of our study is based on memory-based collaborative filtering (CF), which is the most popular recommendation algorithm. But, unlike conventional CF, our proposed algorithm considers not only the correlation of the rating patterns between users, but also the results from trust/distrust relationship network analysis (e.g. who are the most trusted/distrusted users?, whom are the target user trust or distrust?) when calculating the similarity between users. To validate the performance of the proposed algorithm, we applied it to a real-world dataset that contained the trust/distrust relationships among users as well as their numeric ratings on movies. As a result, we found that the proposed algorithm outperformed the conventional CF with statistical significance. Also, we found that distrust relationship was more important than trust relationship in measuring similarities between users. This implies that we need to be more careful about negative relationship rather than positive one when tracking and managing social relationships among users.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.3
no.4
/
pp.366-375
/
2009
In collaborative filtering, many neighbors are needed to improve the quality and stability of the recommendation. The quality may not be good mainly due to the high similarity between two users not guaranteeing the same preference for products considered for recommendation. This paper proposes a consistency definition, rather than similarity, based on information entropy between two users to improve the recommendation. This kind of consistency between two users is then employed as a trust metric in collaborative filtering methods that select neighbors based on the metric. Empirical studies show that such collaborative filtering reduces the number of neighbors required to make the recommendation quality stable. Recommendation quality is also significantly improved.
This study aims to identify which social information have significant influence on the improvement of recommendation trust and how these effects can be different according to the product involvement level. Based on the relevant literature reviews, this study posits four characteristics of recommendation trust, which are closeness, similarity, sincerity, and reputation, and established a research model for the relationship between social information and recommendation trust. And we found a moderating effect of product involvement on the relationship between social information and recommendation trust. 205 trust relationships(links) from 55 respondents of Google Docs. survey data have been collected and tested using multiple regression and hierarchical regression analysis. The results of our hypotheses testing are summarized as follows. Firstly, four social information characteristics of closeness, similarity, sincerity, and reputation have a significantly positive effect on recommendation trust. Secondly, a moderating effect of product involvement between recommendation trust and antecedents (e.g., closeness and reputation) of social information is significant. From the results, we provide theoretical and managerial implications, and suggestions for further research.
This study analyzed the effect of the intrinsic and extrinsic attributes of gochujang, Korean red chili paste, on purchasing intention and recommendation intention for consumption. Survey participants were female, married, aged 30 - 39 years, and highly educated with graduation from a university. Most participants purchased gochujang 1 - 2 times per year, most commonly at a shopping mall, and acquired information on the gochujang product from an advertisement or sponsored TV shows. For the factor analysis, five variables for intrinsic quality were considered: namely, healthiness, economics, convenience, diversity, and sense, whereas three variables were considered for extrinsic quality: trust, external appearance, and image. The factor analysis also confirmed the correlation between the validity and the reliability of the purchasing and recommendation intentions. The effect of intrinsic quality of gochujang on purchasing and recommendation intentions was tested through a multiple regression analysis. The purchase intention was most significantly affected by healthiness, cost, and convenience. On the other hand, the recommendation intention was most significantly affected by the diversity and, to a lesser degree, by the healthiness of the product. Among the extrinsic qualities, trust of consumers and the product appearance had a significant effect on purchasing intention. Recommendation intention was significantly affected by the appearance. And trust significantly influenced the recommendation. Therefore, a concrete and systematic marketing approach considering these factors.
Journal of the Korean Society of Clothing and Textiles
/
v.42
no.5
/
pp.871-883
/
2018
This study tests consumer responses to online product recommendation service offered by a website. A product recommendation service refers to a filtering system that predicts and shows items that consumers would like to purchase based on their searches or pre-purchase information. The survey is conducted on 300 people in an age group between 20 and 40 years in a panel of an online survey firm. Data are analyzed using confirmatory factor analysis and structural equation modeling by AMOS 20.0. The results show that personalization quality does not have a significant effect on trust, but relationship quality and technology quality have a positive effect on trust. Three types of quality of recommendation service also have a positive effect on commitment. Trust and commitment are factors that increase service usage intentions. In addition, this study reveals the moderating effect of light users vs heavy users based on online shopping time. Light users show a negative effect of personalization quality on trust, indicating that they are likely to be uncomfortable to the service using personal information, compared to heavy users. This study also finds that trust vs commitment is an important factor increasing service usage intentions for heavy users vs light users.
Purpose - Since the opening of Korea's distribution market, the domestic network marketing market has been continuing to grow. In this context, research on network marketing independent operators, which plays the most important role in the network marketing industry, is insufficient. This study was to identify the effects of Independent Operator's Company Selection Attributions on the Economic and Non-Economic Satisfaction, Trust, and Recommendation. The results will provide strategic direction, theoretical and practical implications for companies and operators in the network marketing industry. Research design, data, and methodology - In order to verify the research hypotheses, the data were collected from Independent Operators of Network marketing industry using questionnaires. The pretest was conducted from January 8 to 19, 2018, and the main survey was conducted from February 1 to 28. A total of 210 questionnaires, of which 193 copies were collected. The data were analyzed with SPSS 21.0. and AMOS 21.0. Results - The results are as follows; product competitiveness and system competitiveness have significant effects on economic satisfaction and non-economic satisfaction. Economic and non-economic satisfaction have significant effects on business trust. Economic and non-economic satisfaction did not influence recommendation intention directly, but influence it indirectly. Business trust has a significant effect on business recommendation intention. Conclusions - After starting network marketing business as an independent operator, the competitiveness of the company is meaningless, and product competitiveness and system competitiveness are important factors for economic and non-economic satisfaction. Therefore, network marketing companies and independent operators should prioritize product competitiveness and system competitiveness between business development. The findings show that trust in the business is very important for active business Recommendation to others. Therefore, network marketing firms and independent operators need to make efforts to meet economic and non-economic satisfaction, which have a significant impact on business trust.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.5
/
pp.2082-2102
/
2018
In recent years, social network related applications such as WeChat, Facebook, Twitter and so on, have attracted hundreds of millions of people to share their experience, plan or organize, and attend social events with friends. In these operations, plenty of valuable information is accumulated, which makes an innovative approach to explore users' preference and overcome challenges in traditional recommender systems. Based on the study of the existing social network recommendation methods, we find there is an abundant information that can be incorporated into probability matrix factorization (PMF) model to handle challenges such as data sparsity in many recommender systems. Therefore, the research put forward a unified social network recommendation framework that combine tags, trust between users, ratings with PMF. The uniformed method is based on three existing recommendation models (SoRecUser, SoRecItem and SoRec), and the complexity analysis indicates that our approach has good effectiveness and can be applied to large-scale datasets. Furthermore, experimental results on publicly available Last.fm dataset show that our method outperforms the existing state-of-art social network recommendation approaches, measured by MAE and MRSE in different data sparse conditions.
Khiabani, Hamed;Idris, Norbik Bashah;Manan, Jamalul-Lail Ab
KSII Transactions on Internet and Information Systems (TIIS)
/
v.7
no.7
/
pp.1569-1584
/
2013
Ubiquitous interaction in a pervasive environment is the main attribute of smart spaces. Pervasive systems are weaving themselves in our daily life, making it possible to collect user information invisibly, in an unobtrusive manner by known and even unknown parties. Huge number of interactions between users and pervasive devices necessitate a comprehensive trust model which unifies different trust factors like context, recommendation, and history to calculate the trust level of each party precisely. Trusted computing enables effective solutions to verify the trustworthiness of computing platforms. In this paper, we elaborate Unified Trust Model (UTM) which calculates entity's trustworthiness based on history, recommendation, context and platform integrity measurement, and formally use these factors in trustworthiness calculation. We evaluate UTM behaviour by simulating in different scenario experiments using a Trust and Reputation Models Simulator for Wireless Sensor Networks. We show that UTM offers responsive behaviour and can be used effectively in the low interaction environments.
The purpose of this study is to investigate the effects of provider and consumer characteristics, and patient trust on relational commitment among healthcare customers of an university hospital, and to suggest some implications for improving customer relation management of hospitals. Data were collected from 250 patients of an university hospital located in Ulsan using structured self-administered questionnaire. Major result of the analysis is as follows: First, study variables are significantly varied by age and income among socio-economic factors. Second, assurance, and empathy among provider characteristics and customer satisfaction and reputation among consumer characteristics are found to be significant affecting factors on patient trust. Third, trust affects significantly both on re-visit and recommendation among relationship commitment, while reputation affects on re-visit and customer satisfaction and reputation affect on recommendation. Above results imply that relationship management strategy for enhancing patient trust is crucial to improve competitiveness of hospitals in turbulent competition environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.