• 제목/요약/키워드: Recommendation Service Algorithm

검색결과 90건 처리시간 0.024초

맞춤형 생활 스포츠 콘텐츠를 위한 추천 모듈 설계 (Design of Recommendation Module for Customized Sport for All Contents)

  • 최건희;유민정;이재동;이원진
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2016년도 추계학술대회
    • /
    • pp.300-301
    • /
    • 2016
  • 본 논문에서는 사용자의 프로파일과 팀의 평점을 활용하여 생활 스포츠 콘텐츠의 서비스 품질을 개선하기 위한 맞춤형 추천 알고리즘을 제안한다. 제안한 추천 모듈은 프로파일의 정보를 기반하며, 유클리디안 거리 계산과 팀 간 선호도 가중치를 활용하여 사용자에게 적합한 팀 콘텐츠를 추천한다.

  • PDF

연관규칙과 협업적 필터링을 이용한 상품 추천 시스템 개발 (Development of the Goods Recommendation System using Association Rules and Collaborating Filtering)

  • 김지혜;박두순
    • 컴퓨터교육학회논문지
    • /
    • 제9권1호
    • /
    • pp.71-80
    • /
    • 2006
  • 전자상거래가 급속도로 발전함에 따라 고객들의 행동 패턴을 어떻게 발견하느냐와 웹 마이닝 기술을 사용하는 것에 의해 어떻게 상거래를 지능화 할 것인가에 대한 연구가 진행되고 있다. 현재까지 개인화와 상품 추천 시스템을 만들기 위해 가장 성공적이고 가장 넓게 사용되는 기술은 협업필터링 방법이다. 그러나 협업 필터링 방법은 특정 수 이상의 아이템에 대한 평가가 필요하다는 문제를 가지고 있다. 또한, 기존의 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점을 가지고 있다. 본 논문에서는 개선된 Apriori 알고리즘을 이용하고, 아이템들 간에 상호 관계를 가진 협업 필터링 방법을 사용하여 사용자 성향이 반영된 상품 추천 시스템을 개발하였다.

  • PDF

모바일 기기에서 개인화 추천을 위한 실시간 선호도 예측 방법에 대한 연구 (A Study on the Real-Time Preference Prediction for Personalized Recommendation on the Mobile Device)

  • 이학민;엄종석
    • 한국멀티미디어학회논문지
    • /
    • 제20권2호
    • /
    • pp.336-343
    • /
    • 2017
  • We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.

서비스 매쉬업 개발자를 위한 유사도 기반 서비스 추천 방법 (Similarity-based Service Recommendation for Service-Mashup Developers)

  • 김현승;고인영
    • 정보과학회 논문지
    • /
    • 제44권9호
    • /
    • pp.908-917
    • /
    • 2017
  • 웹 서비스 기술이 각광받고 그 사용이 확대됨에 따라, 복잡하고 동적인 서비스 환경에서 사용자에게 적절한 서비스를 추천하는 방법에 대한 연구가 활발히 진행되고 있다. 또한 효과적인 서비스 매쉬업 개발을 위해 서비스를 추천하는 방법이 제안되었으나, 기존의 매쉬업 단위 서비스 추천 방식은 여러 매쉬업 개발자의 성향을 분석하여 그에 맞는 서비스를 추천하지는 못하였다. 이에 본 논문에서는 매쉬업 개발자들이 만든 서비스 매쉬업의 집합들과 추천 대상 개발자의 매쉬업 집합 사이의 유사도를 측정하고 유사한 매쉬업 집합들로부터 서비스를 추천하는 방법을 제안한다. 그리고 ProgrammableWeb에서 수집된 매쉬업 데이터로 실험한 결과를 비교 분석하여 본 연구의 방법이 사용자 기반 협업 필터링 알고리즘보다 높은 정확도와 재현율을 보임을 확인하였다.

VR/AR 환경의 협업 딥러닝을 적용한 맞춤형 조종사 훈련 플랫폼 (Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment)

  • 김희주;이원진;이재동
    • 한국멀티미디어학회논문지
    • /
    • 제23권8호
    • /
    • pp.1075-1087
    • /
    • 2020
  • Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.

태그의 문맥 정보를 이용한 웹 자원 추천 시스템 (Tag Based Web Resource Recommendation System)

  • 송제인;정옥란
    • 인터넷정보학회논문지
    • /
    • 제17권6호
    • /
    • pp.133-141
    • /
    • 2016
  • 최근의 여러 웹서비스에서는 태깅 기능을 제공함으로써 사용자가 작성하는 게시물의 주제를 표현하도록 유도하고 있다. 태그를 이용하면 글이나 사진에 대한 글쓴이의 감정과 같은 문맥적인 정보의 효과적인 추출이 가능하기 때문에, 기계적인 방식보다 글의 내용에 대해서 더 나은 의미 파악이 가능하다. 따라서 이를 추천시스템에 적용한다면 사용자의 만족도를 높일 수 있는 추천이 가능할 것이다. 본 논문에서는 게시글에 속한 태그들 간의 관계를 계산하고, 효율적인 유사도 측정 알고리즘을 통해 게시글과 사용자등의 웹 자원을 추천하는 방법을 제안한다. 마지막으로, 실험을 통해 제안한 방법의 유효성을 검증하고, 사용자의 만족도를 측정하였다.

사용자의 소셜 카테고리를 이용한 유튜브 동영상 추천 알고리즘 (The YouTube Video Recommendation Algorithm using Users' Social Category)

  • 유소엽;정옥란
    • 정보과학회 논문지
    • /
    • 제42권5호
    • /
    • pp.664-670
    • /
    • 2015
  • 인터넷과 스마트폰의 발전과 함께 소셜 미디어 공유 사이트인 유튜브도 크게 성장하여 수많은 동영상을 공유하는 사이트가 됐다. 사용자들이 유튜브를 통해 동영상을 공유하면서 소셜 데이터를 만들어내고, 많은 동영상들 중에서 본인의 관심사가 반영된 동영상 추천을 원하게 된다. 본 논문에서는 유튜브 데이터를 이용하여 사용자의 사회적 관계와 유튜브의 특징이 반영된 소셜 카테고리 분류 목록을 기반으로 사용자의 소셜 카테고리를 추출한다. 우리는 좀 더 정확하고 의미있는 추천을 위해 추출된 사용자 소셜 카테고리를 이용한 유튜브 동영상을 추천하는 알고리즘을 제안하였다. 또한 실험을 통해 그 유효성을 검증하였다.

실내 위치기반 서비스를 위한 사용자 관심지점 탐사 기법과 POI추천 시스템의 구현 (The Development of Users' Interesting Points Analyses Method and POI Recommendation System for Indoor Location Based Services)

  • 김범수;이연;김경배;배해영
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권5호
    • /
    • pp.81-91
    • /
    • 2012
  • 최근 실내 위치기반서비스를 위한 다양한 측위 기술의 발전으로 실내에서도 사용자의 위치측정이 가능해짐에 따라 다양한 형태의 실내 위치기반 서비스가 개발되고 있다. 이에 쇼핑몰이나 백화점 등의 대규모 상업 공간 같은 복잡한 실내 공간에서 사용자에게 가장 적합한 위치나 매장을 추천하는 개인화된 POI 추천 시스템의 개발이 필요하게 되었다. POI 추천을 위해서는 사용자의 이동성과 대규모 상업공간의 공간성을 고려한 사용자 관심지점 탐사 기법의 연구가 필요하다. 이에 본 논문에서는 실내 위치기반 서비스의 POI 추천 시스템의 구현과 사용자들의 이동 데이터로부터 다양한 관심지점을 고려하기 위해 사용자가 일정 시간 동안 머무른 지점을 Stay point라 정의하고 실내공간에서 Stay point를 탐색하는 알고리즘을 제안하였다. 또한 제안된 알고리즘을 이용하여 탐색한 Stay point로부터 방문패턴을 탐사하여 POI 추천 시스템을 구현하였다. 구현된 시스템은 사용자의 모든 이동 로그를 이용한 패턴탐사보다 데이터양을 획기적으로 줄임으로써 빠른 패턴탐사와 메모리 사용량을 줄일 수 있었다.

빅데이터 기반 소비자 유형별 농식품 추천시스템 구축 사례 (Case Study of Big Data-Based Agri-food Recommendation System According to Types of Customers)

  • 문정훈;장익훈;최영찬;김진교;박진
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.903-913
    • /
    • 2015
  • 농림수산식품교육문화정보원에서는 2015년 1월부터 공공데이터 포털 서비스를 시작하였으며 포털 내에 구축된 빅데이터 기반 농식품 추천 시스템을 이용한 맞춤소비정보를 제공하고 있다. 추천시스템의 특징은 첫째, SNS오피니언마이닝, 소비자패널의 모든 구매내역 정보, 기후데이터, 도매가격 데이터와 같은 빅데이터의 성격을 가진 농식품분야의 다양한 데이터들을 이용하기 때문에 데이터 양의 관점에서 추천의 정확도를 높일 수 있다. 둘째, 추천시스템 구축 초기에는 사용자 정보 기반 추천이 어려운 한계를 극복할 수 있는 방법으로 식생활 라이프스타일과 메가트렌드 요인을 이용한 소비자 세분화방법을 사용한다. 이는 사용자 개인정보가 없는 상황에서도 다양한 식품 선호를 반영할 수 있도록 하여 추천실패율을 낯춘다. 셋째, 디리슐레-다항분포를 이용하는 추천 알고리즘을 적용하여 다양한 상황적 요인들의 선호가 반영된 농식품 추천이 가능하도록 하였다. 이 외에도 추천 농식품에 대한 SNS 맛집정보와 버즈량, 관련 식재료를 판매하는 주변 소매점 위치 및 가격정보 등 다양한 정보를 제공하여 농식품 분야 정보에 관심을 높일 수 있도록 시스템을 구현하였다.

연관성분석 기반 도서추천서비스의 이용자 만족에 관한 내러티브 연구 (A Narrative Study on User Satisfaction of Book Recommendation Service based on Association Analysis)

  • 김성훈;노윤주;김미령
    • 한국도서관정보학회지
    • /
    • 제52권3호
    • /
    • pp.287-311
    • /
    • 2021
  • 지식정보화 사회에서 자신에게 적합한 도서를 찾는 일은 정보 이용자들에게 쉽지 않은 일이다. 도서관이 전통적인 서비스에서 벗어나 이용자 맞춤의 추천 서비스를 제공할 필요성이 높아지고 있으나, 현재까지 이용자 만족에 대한 질적인 연구는 거의 없는 상황이다. 본 연구는 연관성 분석 알고리즘인 Apriori를 적용하여 이용자 맞춤 도서추천을 시행하고, 피험자와의 면담을 통해 만족의 요인을 심층분석 하였다. 실험데이터는 서울시 S 전문도서관의 2009년부터 2019년까지 10년간의 대출데이터 중 이용빈도가 높은 100명의 대출 데이터였고, 실험 대상은 심도있는 인터뷰 가능자였다. 연관성 분석 후 도서추천서비스 대상자의 면담자료를 분석하여 도출한 개념과 범주는 각각 개념 58개, 하위 범주 6개, 상위범주 2개였다. 상위 범주는 '독서'와 '도서 추천 서비스'로, '독서'범주에서 독서 동기에 관한 개념이 17개, 선호 도서에 관한 개념이 8개, 기대 효과에 대한 개념이 12개였다. 또 '독서추천 서비스' 범주에서 '반영 희망 요소' 10개, '반영 방법' 4개, '만족 요인' 9개로 나타났다.