본 논문에서는 사용자의 프로파일과 팀의 평점을 활용하여 생활 스포츠 콘텐츠의 서비스 품질을 개선하기 위한 맞춤형 추천 알고리즘을 제안한다. 제안한 추천 모듈은 프로파일의 정보를 기반하며, 유클리디안 거리 계산과 팀 간 선호도 가중치를 활용하여 사용자에게 적합한 팀 콘텐츠를 추천한다.
전자상거래가 급속도로 발전함에 따라 고객들의 행동 패턴을 어떻게 발견하느냐와 웹 마이닝 기술을 사용하는 것에 의해 어떻게 상거래를 지능화 할 것인가에 대한 연구가 진행되고 있다. 현재까지 개인화와 상품 추천 시스템을 만들기 위해 가장 성공적이고 가장 넓게 사용되는 기술은 협업필터링 방법이다. 그러나 협업 필터링 방법은 특정 수 이상의 아이템에 대한 평가가 필요하다는 문제를 가지고 있다. 또한, 기존의 연관 규칙 기법은 개인별 사용자의 성향을 반영하지 못하는 단점을 가지고 있다. 본 논문에서는 개선된 Apriori 알고리즘을 이용하고, 아이템들 간에 상호 관계를 가진 협업 필터링 방법을 사용하여 사용자 성향이 반영된 상품 추천 시스템을 개발하였다.
We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.
웹 서비스 기술이 각광받고 그 사용이 확대됨에 따라, 복잡하고 동적인 서비스 환경에서 사용자에게 적절한 서비스를 추천하는 방법에 대한 연구가 활발히 진행되고 있다. 또한 효과적인 서비스 매쉬업 개발을 위해 서비스를 추천하는 방법이 제안되었으나, 기존의 매쉬업 단위 서비스 추천 방식은 여러 매쉬업 개발자의 성향을 분석하여 그에 맞는 서비스를 추천하지는 못하였다. 이에 본 논문에서는 매쉬업 개발자들이 만든 서비스 매쉬업의 집합들과 추천 대상 개발자의 매쉬업 집합 사이의 유사도를 측정하고 유사한 매쉬업 집합들로부터 서비스를 추천하는 방법을 제안한다. 그리고 ProgrammableWeb에서 수집된 매쉬업 데이터로 실험한 결과를 비교 분석하여 본 연구의 방법이 사용자 기반 협업 필터링 알고리즘보다 높은 정확도와 재현율을 보임을 확인하였다.
Aviation ICT technology is a convergence technology between aviation and electronics, and has a wide variety of applications, including navigation and education. Among them, in the field of aerial pilot training, there are many problems such as the possibility of accidents during training and the lack of coping skills for various situations. This raises the need for a simulated pilot training system similar to actual training. In this paper, pilot training data were collected in pilot training system using VR/AR to increase immersion in flight training, and Customized Pilot Training Platform with Collaborative Deep Learning in VR/AR Environment that can recommend effective training courses to pilots is proposed. To verify the accuracy of the recommendation, the performance of the proposed collaborative deep learning algorithm with the existing recommendation algorithm was evaluated, and the flight test score was measured based on the pilot's training data base, and the deviations of each result were compared. The proposed service platform can expect more reliable recommendation results than previous studies, and the user survey for verification showed high satisfaction.
최근의 여러 웹서비스에서는 태깅 기능을 제공함으로써 사용자가 작성하는 게시물의 주제를 표현하도록 유도하고 있다. 태그를 이용하면 글이나 사진에 대한 글쓴이의 감정과 같은 문맥적인 정보의 효과적인 추출이 가능하기 때문에, 기계적인 방식보다 글의 내용에 대해서 더 나은 의미 파악이 가능하다. 따라서 이를 추천시스템에 적용한다면 사용자의 만족도를 높일 수 있는 추천이 가능할 것이다. 본 논문에서는 게시글에 속한 태그들 간의 관계를 계산하고, 효율적인 유사도 측정 알고리즘을 통해 게시글과 사용자등의 웹 자원을 추천하는 방법을 제안한다. 마지막으로, 실험을 통해 제안한 방법의 유효성을 검증하고, 사용자의 만족도를 측정하였다.
인터넷과 스마트폰의 발전과 함께 소셜 미디어 공유 사이트인 유튜브도 크게 성장하여 수많은 동영상을 공유하는 사이트가 됐다. 사용자들이 유튜브를 통해 동영상을 공유하면서 소셜 데이터를 만들어내고, 많은 동영상들 중에서 본인의 관심사가 반영된 동영상 추천을 원하게 된다. 본 논문에서는 유튜브 데이터를 이용하여 사용자의 사회적 관계와 유튜브의 특징이 반영된 소셜 카테고리 분류 목록을 기반으로 사용자의 소셜 카테고리를 추출한다. 우리는 좀 더 정확하고 의미있는 추천을 위해 추출된 사용자 소셜 카테고리를 이용한 유튜브 동영상을 추천하는 알고리즘을 제안하였다. 또한 실험을 통해 그 유효성을 검증하였다.
최근 실내 위치기반서비스를 위한 다양한 측위 기술의 발전으로 실내에서도 사용자의 위치측정이 가능해짐에 따라 다양한 형태의 실내 위치기반 서비스가 개발되고 있다. 이에 쇼핑몰이나 백화점 등의 대규모 상업 공간 같은 복잡한 실내 공간에서 사용자에게 가장 적합한 위치나 매장을 추천하는 개인화된 POI 추천 시스템의 개발이 필요하게 되었다. POI 추천을 위해서는 사용자의 이동성과 대규모 상업공간의 공간성을 고려한 사용자 관심지점 탐사 기법의 연구가 필요하다. 이에 본 논문에서는 실내 위치기반 서비스의 POI 추천 시스템의 구현과 사용자들의 이동 데이터로부터 다양한 관심지점을 고려하기 위해 사용자가 일정 시간 동안 머무른 지점을 Stay point라 정의하고 실내공간에서 Stay point를 탐색하는 알고리즘을 제안하였다. 또한 제안된 알고리즘을 이용하여 탐색한 Stay point로부터 방문패턴을 탐사하여 POI 추천 시스템을 구현하였다. 구현된 시스템은 사용자의 모든 이동 로그를 이용한 패턴탐사보다 데이터양을 획기적으로 줄임으로써 빠른 패턴탐사와 메모리 사용량을 줄일 수 있었다.
농림수산식품교육문화정보원에서는 2015년 1월부터 공공데이터 포털 서비스를 시작하였으며 포털 내에 구축된 빅데이터 기반 농식품 추천 시스템을 이용한 맞춤소비정보를 제공하고 있다. 추천시스템의 특징은 첫째, SNS오피니언마이닝, 소비자패널의 모든 구매내역 정보, 기후데이터, 도매가격 데이터와 같은 빅데이터의 성격을 가진 농식품분야의 다양한 데이터들을 이용하기 때문에 데이터 양의 관점에서 추천의 정확도를 높일 수 있다. 둘째, 추천시스템 구축 초기에는 사용자 정보 기반 추천이 어려운 한계를 극복할 수 있는 방법으로 식생활 라이프스타일과 메가트렌드 요인을 이용한 소비자 세분화방법을 사용한다. 이는 사용자 개인정보가 없는 상황에서도 다양한 식품 선호를 반영할 수 있도록 하여 추천실패율을 낯춘다. 셋째, 디리슐레-다항분포를 이용하는 추천 알고리즘을 적용하여 다양한 상황적 요인들의 선호가 반영된 농식품 추천이 가능하도록 하였다. 이 외에도 추천 농식품에 대한 SNS 맛집정보와 버즈량, 관련 식재료를 판매하는 주변 소매점 위치 및 가격정보 등 다양한 정보를 제공하여 농식품 분야 정보에 관심을 높일 수 있도록 시스템을 구현하였다.
지식정보화 사회에서 자신에게 적합한 도서를 찾는 일은 정보 이용자들에게 쉽지 않은 일이다. 도서관이 전통적인 서비스에서 벗어나 이용자 맞춤의 추천 서비스를 제공할 필요성이 높아지고 있으나, 현재까지 이용자 만족에 대한 질적인 연구는 거의 없는 상황이다. 본 연구는 연관성 분석 알고리즘인 Apriori를 적용하여 이용자 맞춤 도서추천을 시행하고, 피험자와의 면담을 통해 만족의 요인을 심층분석 하였다. 실험데이터는 서울시 S 전문도서관의 2009년부터 2019년까지 10년간의 대출데이터 중 이용빈도가 높은 100명의 대출 데이터였고, 실험 대상은 심도있는 인터뷰 가능자였다. 연관성 분석 후 도서추천서비스 대상자의 면담자료를 분석하여 도출한 개념과 범주는 각각 개념 58개, 하위 범주 6개, 상위범주 2개였다. 상위 범주는 '독서'와 '도서 추천 서비스'로, '독서'범주에서 독서 동기에 관한 개념이 17개, 선호 도서에 관한 개념이 8개, 기대 효과에 대한 개념이 12개였다. 또 '독서추천 서비스' 범주에서 '반영 희망 요소' 10개, '반영 방법' 4개, '만족 요인' 9개로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.