• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.024 seconds

An E-Mail Recommendation System using Semi-Automatic Method (반자동 방식을 이용한 이메일 추천 시스템)

  • Jeong, Ok-Ran;Jo, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.604-607
    • /
    • 2003
  • Most recommendation systems recommend the products or other information satisfying preferences of users on the basis of the users' previous profile information and other information related to product searches and purchase of users visiting web sites. This study aims to apply these application categories to e-mail more necessary to users. The E-Mail System has the strong personality so that there will be some problems even if e-mails are automatically classified by category through the learning on the basis of the personal rules. In consideration with this aspect, we need the semi-automatic system enabling both automatic classification and recommendation method to enhance the satisfaction of users. Accordingly, this paper uses two approaches as the solution against the misclassification that the users consider as the accuracy of classification itself using the dynamic threshold in Bayesian Learning Algorithm and the second one is the methodological approach using the recommendation agent enabling the users to make the final decision.

  • PDF

Improved Internet Resource Recommendation Method using FOAF and SNA (FOAF와 SNA를 이용한 개선된 인터넷 자원 추천 방법)

  • Wang, Qing;Sohn, Jong-Soo;Chung, In-Jeong
    • The KIPS Transactions:PartB
    • /
    • v.19B no.3
    • /
    • pp.165-176
    • /
    • 2012
  • In recent years, due to rapidly increasing user-created internet contents coupled with the development of community-based websites, the internet resource recommendation systems are attracting attentions of the users. However, most of the systems have failed in properly reflecting users' characteristics and thus they have difficulty in recommending appropriate resources to users. In this paper, we propose an internet resource recommendation method using FOAF and SNA which fully reflects the characteristics of users. In our method, 1) we extract the data about user characteristics and tags using FOAF; 2) we generate graphs representing users, user characteristics and tags after inserting data into 3 matrixes and integrating them; 3) we recommend the appropriate internet resources after selecting common characteristics of the recommended items and Hot tags by analyzing social network. For verification of our proposed method, we implemented our method to establish and analyze an experimental social group. We verified through our experiments that the more users added in the social network, the higher quality of recommendation result we got than the item-based recommendation method. By using the suggested idea in this paper, we can make a more appropriate recommendation of resources to users while effectively retrieving explosively increasing internet resources.

The Educational Contents Recommendation System Design based on Collaborative Filtering Method (협업 여과 기반의 교육용 컨텐츠 추천 시스템 설계)

  • Lee, Yong-Jun;Lee, Se-Hoon;Wang, Chang-Jong
    • The Journal of Korean Association of Computer Education
    • /
    • v.6 no.2
    • /
    • pp.147-156
    • /
    • 2003
  • Collaborative Filtering is a popular technology in electronic commerce, which adapt the opinions of entire communities to provide interesting products or personalized resources and items. It has been applied to many kinds of electronic commerce domain since Collaborative Filtering has proven an accurate and reliable tool. But educational application remain limited yet. We design collaborative filtering recommendation system using user's ratings in educational contents recommendation. Also We propose a method of similarity compensation using user's information for improvement of recommendation accuracy. The proposed method is more efficient than the traditional collaborative filtering method by experimental comparisons of mean absolute error(MAE) and reciever operating characteristics(ROC) values.

  • PDF

Paper Recommendation Using SPECTER with Low-Rank and Sparse Matrix Factorization

  • Panpan Guo;Gang Zhou;Jicang Lu;Zhufeng Li;Taojie Zhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1163-1185
    • /
    • 2024
  • With the sharp increase in the volume of literature data, researchers must spend considerable time and energy locating desired papers. A paper recommendation is the means necessary to solve this problem. Unfortunately, the large amount of data combined with sparsity makes personalizing papers challenging. Traditional matrix decomposition models have cold-start issues. Most overlook the importance of information and fail to consider the introduction of noise when using side information, resulting in unsatisfactory recommendations. This study proposes a paper recommendation method (PR-SLSMF) using document-level representation learning with citation-informed transformers (SPECTER) and low-rank and sparse matrix factorization; it uses SPECTER to learn paper content representation. The model calculates the similarity between papers and constructs a weighted heterogeneous information network (HIN), including citation and content similarity information. This method combines the LSMF method with HIN, effectively alleviating data sparsity and cold-start issues and avoiding topic drift. We validated the effectiveness of this method on two real datasets and the necessity of adding side information.

K-Means Clustering with Content Based Doctor Recommendation for Cancer

  • kumar, Rethina;Ganapathy, Gopinath;Kang, Jeong-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.167-176
    • /
    • 2020
  • Recommendation Systems is the top requirements for many people and researchers for the need required by them with the proper suggestion with their personal indeed, sorting and suggesting doctor to the patient. Most of the rating prediction in recommendation systems are based on patient's feedback with their information regarding their treatment. Patient's preferences will be based on the historical behaviour of similar patients. The similarity between the patients is generally measured by the patient's feedback with the information about the doctor with the treatment methods with their success rate. This paper presents a new method of predicting Top Ranked Doctor's in recommendation systems. The proposed Recommendation system starts by identifying the similar doctor based on the patients' health requirements and cluster them using K-Means Efficient Clustering. Our proposed K-Means Clustering with Content Based Doctor Recommendation for Cancer (KMC-CBD) helps users to find an optimal solution. The core component of KMC-CBD Recommended system suggests patients with top recommended doctors similar to the other patients who already treated with that doctor and supports the choice of the doctor and the hospital for the patient requirements and their health condition. The recommendation System first computes K-Means Clustering is an unsupervised learning among Doctors according to their profile and list the Doctors according to their Medical profile. Then the Content based doctor recommendation System generates a Top rated list of doctors for the given patient profile by exploiting health data shared by the crowd internet community. Patients can find the most similar patients, so that they can analyze how they are treated for the similar diseases, and they can send and receive suggestions to solve their health issues. In order to the improve Recommendation system efficiency, the patient can express their health information by a natural-language sentence. The Recommendation system analyze and identifies the most relevant medical area for that specific case and uses this information for the recommendation task. Provided by users as well as the recommended system to suggest the right doctors for a specific health problem. Our proposed system is implemented in Python with necessary functions and dataset.

Things Recommendation Method using Social Relationship in Social Internet of Things (소셜 사물인터넷에서 소셜 관계를 이용한 사물 추천 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.49-59
    • /
    • 2014
  • The Internet of Things(IoT) is a new promising technology made from a variety of technology. The IoT links the objects or people, then enabling anytime, anywhere connectivity for anything and not only for anyone. Social networking services have changed the way people communicate. Recently, new research challenges in many areas of Internet of things and social networking services are fired. In this paper, we propose things recommendation method using social relationship in social Internet of Things. We study previous researches about social network service, IoT, and social IoT. We proposed SIoT_FW(Social IoT Friendship Weight) using static and a dynamic social friendship weight. Also, our method considers four social relationships (Ownership Object Relationship, Co-Location Object Relationship, Social Object Relationship, Parental Object Relationship). We presents a music device scenario using our proposed method.

Application of Multidimensional Scaling Method for E-Commerce Personalized Recommendation (전자상거래 개인화 추천을 위한 다차원척도법의 활용)

  • Kim Jong U;Yu Gi Hyeon;Easley Robert F.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.93-97
    • /
    • 2002
  • In this paper, we propose personalized recommendation techniques based on multidimensional scaling (MDS) method for Business to Consumer Electronic Commerce. The multidimensional scaling method is traditionally used in marketing domain for analyzing customers' perceptional differences about brands and products. In this study, using purchase history data, customers in learning dataset are assigned to specific product categories, and after then using MDS a positioning map is generated to map product categories and alternative advertisements. The positioning map will be used to select personalized advertisement in real time situation. In this paper, we suggest the detail design of personalized recommendation method using MDS and compare with other approaches (random approach, collaborative filtering, and TOP3 approach)

  • PDF

Context-based Incremental Preference Analysis Method in Ubiquitous Commerce (유비쿼터스 상거래 환경의 컨텍스트 기반 점진적 선호 분석 기법)

  • Ku Mi Sug;Hwang Jeong Hee;Choi Nam Kyu;Jung Doo Young;Ryu Keun Ho
    • The KIPS Transactions:PartD
    • /
    • v.11D no.7 s.96
    • /
    • pp.1417-1426
    • /
    • 2004
  • As Ubiquitous commerce is coming personalization service is getting interested. And also the recommendation method which offers useful information to customer becomes more important. However, most of them depend on specific method and are restricted to the E-commerce. For applying these recommendation methods into U-commerce, first it is necessary that the extended context modeling and systematic connection of the methods to complement strength and weakness of recommendation methods in each commercial transaction. Therefore, we propose a mod-eling technique of context information related to personal activation in commercial transaction and show incremental preference analysis method, using preference tree which is closely connected to recommendation method in each step. And also, we use an XML indexing technique to effi-ciently extract the recommendation information from a preference tree.

App Recommendation Based on Characteristic Similarity (특성 유사도 기반 앱 추천)

  • Kim, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.13 no.4
    • /
    • pp.559-565
    • /
    • 2012
  • The remarkable development of IT is contributed to popularization of smart phones, which in turn creates a new domain called app store. Smartphone apps have grown fast because they can be easily purchased through an app store. As the volume of apps traded in app stores is so huge that it is extremely hard for users to find the exact app they want. In general, an app store recommends an app to users based on the search words they entered. In terms of recommendation of app, this kind of content-based method is not effective. To increase accuracy in recommending app, this paper proposes a characteristic similarity-based app recommendation method. This method creates attributes on the app based on the related information such as genre, functionality and number of downloads and then compares them with the propensity to use the app. According to diverse simulations, the method proposed in this paper improved the performance of app recommendation by 33% in average, compared to the conventional method.

Personalized e-Commerce Recommendation System using RFM method and Association Rules (RFM 기법과 연관성 규칙을 이용한 개인화된 전자상거래 추천시스템)

  • Jin, Byeong-Woon;Cho, Young-Sung;Ryu, Keun-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.227-235
    • /
    • 2010
  • This paper proposes the recommendation system which is advanced using RFM method and Association Rules in e-Commerce. Using a implicit method which is not used user's profile for rating, it is necessary for user to keep the RFM score and Association Rules about users and items based on the whole purchased data in order to recommend the items. This proposing system is possible to advance recommendation system using RFM method and Association Rules for cross-selling, and also this system can avoid the duplicated recommendation by the cross comparison with having recommended items before. And also, it's efficient for them to build the strategy for marketing and crm(customer relationship management). It can be improved and evaluated according to the criteria of logicality through the experiment with dataset collected in a cosmetic cyber shopping mall. Finally, it is able to realize the personalized recommendation system for one to one web marketing in e-Commerce.