• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.027 seconds

A Recommendation Technique using Weight of User Information (사용자 정보 가중치를 이용한 추천 기법)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.877-885
    • /
    • 2011
  • A collaborative filtering(CF) is the most widely used technique in recommender system. However, CF has sparsity and scalability problems. These problems reduce the accuracy of recommendation and extensive studies have been made to solve these problems, In this paper, we proposed a method that uses a weight so as to solve these problems. After creating a user-item matrix, the proposed method analyzes information about users who prefer the item only by using data with a rating over 4 for enhancing the accuracy in the recommendation. The proposed method uses information about the genre of the item as well as analyzed user information as a weight during the calculation of similarity, and it calculates prediction by using only data for which the similarity is over a threshold and uses the data as the rating value of unrated data. It is possible simultaneously to reduce sparsity and to improve accuracy by calculating prediction through an analysis of the characteristics of an item. Also, it is possible to conduct a quick classification based on the analyzed information once a new item and a user are registered. The experiment result indicated that the proposed method has been more enhanced the accuracy, compared to item based, genre based methods.

A Study on Hybrid Recommendation System Based on Usage frequency for Multimedia Contents (멀티미디어 콘텐츠를 위한 이용빈도 기반 하이브리드 추천시스템에 관한 연구)

  • Kim, Yong;Moon, Sung-Been
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.3 s.61
    • /
    • pp.91-125
    • /
    • 2006
  • Recent advancements in information technology and the Internet have caused an explosive increase in the information available and the means to distribute it. However, such information overflow has made the efficient and accurate search of information a difficulty for most users. To solve this problem, an information retrieval and filtering system was developed as an important tool for users. Libraries and information centers have been in the forefront to provide customized services to satisfy the user's information needs under the changing information environment of today. The aim of this study is to propose an efficient information service for libraries and information centers to provide a personalized recommendation system to the user. The proposed method overcomes the weaknesses of existing systems, by providing a personalized hybrid recommendation method for multimedia contents that works in a large-scaled data and user environment. The system based on the proposed hybrid method uses an effective framework to combine Association Rule with Collaborative Filtering Method.

Collaborative Filtering for Recommendation based on Neural Network (추천을 위한 신경망 기반 협력적 여과)

  • 김은주;류정우;김명원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.457-466
    • /
    • 2004
  • Recommendation is to offer information which fits user's interests and tastes to provide better services and to reduce information overload. It recently draws attention upon Internet users and information providers. The collaborative filtering is one of the widely used methods for recommendation. It recommends an item to a user based on the reference users' preferences for the target item or the target user's preferences for the reference items. In this paper, we propose a neural network based collaborative filtering method. Our method builds a model by learning correlation between users or items using a multi-layer perceptron. We also investigate integration of diverse information to solve the sparsity problem and selecting the reference users or items based on similarity to improve performance. We finally demonstrate that our method outperforms the existing methods through experiments using the EachMovie data.

Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network (소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템)

  • Kwon, Eungju;Kim, Jongwoo;Heo, Nojeong;Kang, Sanggil
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.3
    • /
    • pp.333-344
    • /
    • 2012
  • This paper proposes a system which recommends movies using information from social network services containing personal interest and taste. Method for establishing data is as follows. The system gathers movies' information from web sites and user's information from social network services such as Facebook and twitter. The data from social network services is categorized into six steps of emotion level for more accurate processing following users' emotional states. Gathered data will be established into vector space model which is ideal for analyzing and deducing the information with the system which is suggested in this paper. The existing similarity measurement method for movie recommendation is presentation of vector information about emotion level and similarity measuring method on the coordinates using Cosine measure. The deducing method suggested in this paper is two-phase arithmetic operation as follows. First, using general cosine measurement, the system establishes movies list. Second, using similarity measurement, system decides recommendable movie list by vector operation from the coordinates. After Comparative Experimental Study on the previous recommendation systems and new one, it turned out the new system from this study is more helpful than existing systems.

Hybrid Recommendation System of Qualitative Information Based on Content Similarity and Social Affinity Analysis (컨텐츠 유사도와 사회적 친화도 분석 기법을 혼합한 가치정보의 추천 시스템)

  • Kim, Myeonghun;Kim, Sangwook
    • Journal of KIISE
    • /
    • v.43 no.11
    • /
    • pp.1188-1200
    • /
    • 2016
  • Recommendation systems play a significant role in providing personalized information to users, with enhanced satisfaction and reduced information overload. Since the mid-1990s, many studies have been conducted on recommendation systems, but few have examined the recommendations of information from people in the online social networking environment. In this paper, we present a hybrid recommendation method that combines both the traditional system of content-based techniques to improve specialization, and the recently developed system of social network-based techniques to best overcome a few limitations of the traditional techniques, such as the cold-start problem. By suggesting a state-of-the-art method, this research will help users in online social networks view more personalized information with less effort than before.

The Development of Users' Interesting Points Analyses Method and POI Recommendation System for Indoor Location Based Services (실내 위치기반 서비스를 위한 사용자 관심지점 탐사 기법과 POI추천 시스템의 구현)

  • Kim, Beoum-Su;Lee, Yeon;Kim, Gyeong-Bae;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.5
    • /
    • pp.81-91
    • /
    • 2012
  • Recently, as location-determination of indoor users is available with the development of variety of localization techniques for indoor location-based service, diverse indoor location based services are proposed. Accordingly, it is necessary to develop individualized POI recommendation service for recommending most interested points of large-scale commercial spaces such as shopping malls and departments. For POI recommendation, it is necessary to study the method for exploring location which users are interested in location with considering user's mobility in large-scale commercial spaces. In this paper, we proposed POI recommendation system with the definition of users' as 'Stay point' in order to consider users' various interest locations. By using the proposed algorithm, we analysis users' Stay points, then mining the users' visiting pattern to finished the proposed. POI Recommendation System. The proposed system decreased data more dramatically than that of using user's entire mobility data and usage of memory.

Comparison of Product and Customer Feature Selection Methods for Content-based Recommendation in Internet Storefronts (인터넷 상점에서의 내용기반 추천을 위한 상품 및 고객의 자질 추출 성능 비교)

  • Ahn Hyung-Jun;Kim Jong-Woo
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.279-286
    • /
    • 2006
  • One of the widely used methods for product recommendation in Internet storefronts is matching product features against target customer profiles. When using this method, it's very important to choose a suitable subset of features for recommendation efficiency and performance, which, however, has not been rigorously researched so far. In this paper, we utilize a dataset collected from a virtual shopping experiment in a Korean Internet book shopping mall to compare several popular methods from other disciplines for selecting features for product recommendation: the vector-space model, TFIDF(Term Frequency-Inverse Document Frequency), the mutual information method, and the singular value decomposition(SVD). The application of SVD showed the best performance in the analysis results.

A Method for Recommending Learning Contents Using Similarity and Difficulty (유사도와 난이도를 이용한 학습 콘텐츠 추천 방법)

  • Park, Jae -Wook;Lee, Yong-Kyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.127-135
    • /
    • 2011
  • It is required that an e-learning system has a content recommendation component which helps a learner choose an item. In order to predict items concerning learner's interest, collaborative filtering and content-based filtering methods have been most widely used. The methods recommend items for a learner based on other learner's interests without considering the knowledge level of the learner. So, the effectiveness of the recommendation can be reduced when the number of overall users are relatively small. Also, it is not easy to recommend a newly added item. In order to address the problem, we propose a content recommendation method based on the similarity and the difficulty of an item. By using a recommendation function that reflects both characteristics of items, a higher-level leaner can choose more difficult but less similar items, while a lower-level learner can select less difficult but more similar items, Thus, a learner can be presented items according to his or her level of achievement, which is irrelevant to other learner's interest.

Levelized Data Processing Method for Social Search in Ubiquitous Environment (유비쿼터스 환경에서 소셜 검색을 위한 레벨화된 데이터 처리 기법)

  • Kim, Sung Rim;Kwon, Joon Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.1
    • /
    • pp.61-71
    • /
    • 2014
  • Social networking services have changed the way people communicate. Rapid growth of information generated by social networking services requires effective search methods to give useful results. Over the last decade, social search methods have rapidly evolved. Traditional techniques become unqualified because they ignore social relation data. Existing social recommendation approaches consider social network structure, but social context has not been fully considered. Especially, the friend recommendation is an important feature of SNSs. People tend to trust the opinions of friends they know rather than the opinions of strangers. In this paper, we propose a levelized data processing method for social search in ubiquitous environment. We study previous researches about social search methods in ubiquitous environment. Our method is a new paradigm of levelelized data processing method which can utilize information in social networks, using location and friendship weight. Several experiments are performed and the results verify that the proposed method's performance is better than other existing method.

An Expert Recommendation System using Ontology-based Social Network Analysis (온톨로지 기반 소설 네트워크 분석을 이용한 전문가 추천 시스템)

  • Park, Sang-Won;Choi, Eun-Jeong;Park, Min-Su;Kim, Jeong-Gyu;Seo, Eun-Seok;Park, Young-Tack
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.5
    • /
    • pp.390-394
    • /
    • 2009
  • The semantic web-based social network is highly useful in a variety of areas. In this paper we make diverse analyses of the FOAF-based social network, and propose an expert recommendation system. This system presents useful method of ontology-based social network using SparQL, RDFS inference, and visualization tools. Then we apply it to real social network in order to make various analyses of centrality, small world, scale free, etc. Moreover, our system suggests method for analysis of an expert on specific field. We expect such method to be utilized in multifarious areas - marketing, group administration, knowledge management system, and so on.