• Title/Summary/Keyword: Recommendation Method

Search Result 976, Processing Time 0.021 seconds

Image recommendation algorithm based on profile using user preference and visual descriptor (사용자 선호도와 시각적 기술자를 이용한 사용자 프로파일 기반 이미지 추천 알고리즘)

  • Kim, Deok-Hwan;Yang, Jun-Sik;Cho, Won-Hee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.463-474
    • /
    • 2008
  • The advancement of information technology and the popularization of Internet has explosively increased the amount of multimedia contents. Therefore, the requirement of multimedia recommendation to satisfy a user's needs increases fastly. Up to now, CF is used to recommend general items and multimedia contents. However, general CF doesn't reflect visual characteristics of image contents so that it can't be adaptable to image recommendation. Besides, it has limitations in new item recommendation, the sparsity problem, and dynamic change of user preference. In this paper, we present new image recommendation method FBCF (Feature Based Collaborative Filtering) to resolve such problems. FBCF builds new user profile by clustering visual features in terms of user preference, and reflects user's current preference to recommendation by using preference feedback. Experimental result using real mobile images demonstrate that FBCF outperforms conventional CF by 400% in terms of recommendation ratio.

Personalized Information Recommendation System on Smartphone (스마트폰 기반 사용자 정보추천 시스템 개발)

  • Kim, Jin-A;Kwon, Eung-Ju;Kang, Sanggil
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • Recently, with a rapidly growing of the mobile content market, a variety of mobile-based applications are being launched. But mobile devices, compared to the average computer, take a lot of effort and time to get the final contents you want to use due to the restrictions such as screen size and input methods. To solve this inconvenience, a recommender system is required, which provides customized information that users prefer by filtering and forecasting the information.In this study, an tailored multi-information recommendation system utilizing a Personalized information recommendation system on smartphone is proposed. Filtering of information is to predict and recommend the information the individual would prefer to by using the user-based collaborative filtering. At this time, the degree of similarity used for the user-based collaborative filtering process is Euclidean distance method using the Pearson's correlation coefficient as weight value.As a real applying case to evaluate the performance of the recommender system, the scenarios showing the usefulness of recommendation service for the actual restaurant is shown. Through the comparison experiment the augmented reality based multi-recommendation services to the existing single recommendation service, the usefulness of the recommendation services in this study is verified.

Content Recommendation System Using User Context-aware based Knowledge Filtering in Smart Environments (스마트 환경에서의 사용자 상황인지 기반 지식 필터링을 이용한 콘텐츠 추천 시스템)

  • Lee, Dongwoo;Kim, Ungsoo;Yeom, Keunhyuk
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.35-48
    • /
    • 2017
  • There are many and various devices like sensors, displays, smart phone, etc. in smart environment. And contents can be provided by using these devices. Vast amounts of contents are provided to users, but in most environments, there are no regard for user or some simple elements like location and time are regarded. So there's a limit to provide meaningful contents to users. In this paper, I suggest the contents recommendation system that can recommend contents to users by reasoning context of users, devices and contents. The contents recommendation system suggested in this paper recommend the contents by calculating the user preferences using the situation reasoned with the contextual data acquired from various devices and the user profile received from the user directly. To organize this process, the method on how to model ontology with domain knowledge and how to design and develop the contents recommendation system are discussed in this paper. And an application of the contents recommendation system in Centum City, Busan is introduced. Then, the evaluation methods how the contents recommendation system is evaluated are explained. The evaluation result shows that the mean absolute error is 0.8730, which shows the excellent performance of the proposed contents recommendation system.

Evaluating the Quality of Recommendation System by Using Serendipity Measure (세렌디피티 지표를 이용한 추천시스템의 품질 평가)

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.89-103
    • /
    • 2019
  • Recently, various approaches to recommendation systems have been studied in terms of the quality of recommendation system. A recommender system basically aims to provide personalized recommendations to users for specific items. Most of these systems always recommend the most relevant items of users or items. Traditionally, the evaluation of recommender system quality has focused on the various predictive accuracy metrics of these. However, recommender system must be not only accurate but also useful to users. User satisfaction with recommender systems as an evaluation criterion of recommender system is related not only to how accurately the system recommends but also to how much it supports the user's decision making. In particular, highly serendipitous recommendation would help a user to find a surprising and interesting item. Serendipity in this study is defined as a measure of the extent to which the recommended items are both attractive and surprising to the users. Therefore, this paper proposes an application of serendipity measure to recommender systems to evaluate the performance of recommender systems in terms of recommendation system quality. In this study we define relevant or attractive unexpectedness as serendipity measure for assessing recommendation systems. That is, serendipity measure is evaluated as the measure indicating how the recommender system can find unexpected and useful items for users. Our experimental results show that highly serendipitous recommendation such as item-based collaborative filtering method has better performance than the other recommendations, i.e. user-based collaborative filtering method in terms of recommendation system quality.

A New Collaborative Filtering Method for Movie Recommendation Using Genre Interest (영화 추천을 위한 장르 흥미도를 이용한 새로운 협력 필터링 방식)

  • Lee, Soojung
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.329-335
    • /
    • 2014
  • Collaborative filtering has been popular in commercial recommender systems, as it successfully implements social behavior of customers by suggesting items that might fit to the interests of a user. So far, most common method to find proper items for recommendation is by searching for similar users and consulting their ratings. This paper suggests a new similarity measure for movie recommendation that is based on genre interest, instead of differences between ratings made by two users as in previous similarity measures. From extensive experiments, the proposed measure is proved to perform significantly better than classic similarity measures in terms of both prediction and recommendation qualities.

Recommendation using Context Awareness based Information Filtering in Smart Home (스마트 홈에서 상황인식 기반의 정보 필터링을 이용한 추천)

  • Chung, Kyung-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.17-25
    • /
    • 2008
  • The smart home environment focuses on recognizing the context and physical entities. And this is mainly focused on the personalized service supplied conversational interactions. In this paper, we proposed the recommendation using the context awareness based information filtering that dynamically applied by the context awareness as well as the meta data in the smart home. The proposed method defined the context information and recommended the profited service for the user’s taste using the context awareness based information filtering. Accordingly, the satisfaction of users and the quality of services will be improved the efficient recommendation by supporting the distributed processing as well as the mobility of services. Finally, to evaluate the performance of the proposed method, this study applies to MovieLens dataset in the OSGi framework, and it is compared with the performance of previous studies.

An Effective Preference Model to Improve Top-N Recommendation (상위 N개 항목의 추천 정확도 향상을 위한 효과적인 선호도 표현방법)

  • Lee, Jaewoong;Lee, Jongwuk
    • Journal of KIISE
    • /
    • v.44 no.6
    • /
    • pp.621-627
    • /
    • 2017
  • Collaborative filtering is a technique that effectively recommends unrated items for users. Collaborative filtering is based on the similarity of the items evaluated by users. The existing top-N recommendation methods are based on pair-wise and list-wise preference models. However, these methods do not effectively represent the relative preference of items that are evaluated by users, and can not reflect the importance of each item. In this paper, we propose a new method to represent user's latent preference by combining an existing preference model and the notion of inverse user frequency. The proposed method improves the accuracy of existing methods by up to two times.

Application and Analysis of Emotional Attributes using Crowdsourced Method for Hangul Font Recommendation System (한글 글꼴 추천시스템을 위한 크라우드 방식의 감성 속성 적용 및 분석)

  • Kim, Hyun-Young;Lim, Soon-Bum
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.4
    • /
    • pp.704-712
    • /
    • 2017
  • Various researches on content sensibility with the development of digital contents are under way. Emotional research on fonts is also underway in various fields. There is a requirement to use the content expressions in the same way as the content, and to use the font emotion and the textual sensibility of the text in harmony. But it is impossible to select a proper font emotion in Korea because each of more than 6,000 fonts has a certain emotion. In this paper, we analysed emotional classification attributes and constructed the Hangul font recommendation system. Also we verified the credibility and validity of the attributes themselves in order to apply to Korea Hangul fonts. After then, we tested whether general users can find a proper font in a commercial font set through this emotional recommendation system. As a result, when users want to express their emotions in sentences more visually, they can get a recommendation of a Hangul font having a desired emotion by utilizing font-based emotion attribute values collected through the crowdsourced method.

Ontology-based Recommendation System for Maintenance of Korean Architectural Heritage

  • Lee, Jongwook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.10
    • /
    • pp.49-55
    • /
    • 2019
  • In this paper, we propose ontology-based recommendation system for supporting maintenance of Korean architectural heritage. This study includes the following: 1) design of ontology expressing repair information of architectural heritage, 2) creation of repair case DB, 3) creation of a recommendation system of repair method. For this study, we designed the ontology that expresses the information of Korean wooden building cultural heritage by referring to the existing heritage ontologies. Second, we created the repair information database based on the repair contents and the expert interview data provided by the National Institute of Cultural Heritage and the Cultural Heritage Administration. Third, we developed a system that recommends the repair method of Korean wooden architectural heritage with the most similar phenomena and causes. This study contributes to sharing repair knowledge and determining repair methods for architectural heritage repair.

Dialog-based multi-item recommendation using automatic evaluation

  • Euisok Chung;Hyun Woo Kim;Byunghyun Yoo;Ran Han;Jeongmin Yang;Hwa Jeon Song
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.277-289
    • /
    • 2024
  • In this paper, we describe a neural network-based application that recommends multiple items using dialog context input and simultaneously outputs a response sentence. Further, we describe a multi-item recommendation by specifying it as a set of clothing recommendations. For this, a multimodal fusion approach that can process both cloth-related text and images is required. We also examine achieving the requirements of downstream models using a pretrained language model. Moreover, we propose a gate-based multimodal fusion and multiprompt learning based on a pretrained language model. Specifically, we propose an automatic evaluation technique to solve the one-to-many mapping problem of multi-item recommendations. A fashion-domain multimodal dataset based on Koreans is constructed and tested. Various experimental environment settings are verified using an automatic evaluation method. The results show that our proposed method can be used to obtain confidence scores for multi-item recommendation results, which is different from traditional accuracy evaluation.