• 제목/요약/키워드: Recombination Loss

검색결과 54건 처리시간 0.028초

Simulated Study on the Effects of Substrate Thickness and Minority-Carrier Lifetime in Back Contact and Back Junction Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.107-112
    • /
    • 2017
  • The BCBJ (Back Contact and Back Junction) or back-lit solar cell design eliminates shading loss by placing the pn junction and metal electrode contacts all on one side that faces away from the sun. However, as the electron-hole generation sites now are located very far from the pn junction, loss by minority-carrier recombination can be a significant issue. Utilizing Medici, a 2-dimensional semiconductor device simulation tool, the interdependency between the substrate thickness and the minority-carrier recombination lifetime was studied in terms of how these factors affect the solar cell power output. Qualitatively speaking, the results indicate that a very high quality substrate with a long recombination lifetime is needed to maintain the maximum power generation. The quantitative value of the recombination lifetime of minority-carriers, i.e., electrons in p-type substrates, required in the BCBJ cell is about one order of magnitude longer than that in the front-lit cell, i.e., $5{\times}10^{-4}sec$ vs. $5{\times}10^{-5}sec$. Regardless of substrate thickness up to $150{\mu}m$, the power output in the BCBJ cell stays at nearly the maximum value of about $1.8{\times}10^{-2}W{\cdot}cm^{-2}$, or $18mW{\cdot}cm^{-2}$, as long as the recombination lifetime is $5{\times}10^{-4}s$ or longer. The output power, however, declines steeply to as low as $10mW{\cdot}cm^{-2}$ when the recombination lifetime becomes significantly shorter than $5{\times}10^{-4}sec$. Substrate thinning is found to be not as effective as in the front-lit case in stemming the decline in the output power. In view of these results, for BCBJ applications, the substrate needs to be only mono-crystalline Si of very high quality. This bars the use of poly-crystalline Si, which is gaining wider acceptance in standard front-lit solar cells.

Influence of RF Magnetron Sputtering Condition on the ZnO Passivating Layer for Dye-sensitized Solar Cells

  • Rhee, Seung Woo;Choi, Hyung Wook
    • Transactions on Electrical and Electronic Materials
    • /
    • 제14권2호
    • /
    • pp.86-89
    • /
    • 2013
  • Dye-sensitized solar cells have a FTO/$TiO_2$/Dye/Electrode/Pt counter electrode structure, yet more than a 10% electron loss occurs at each interface. A passivating layer between the $TiO_2$/FTO glass interface can prevent this loss of electrons. In theory, ZnO has excellent electron collecting capabilities and a 3.4 eV band gap, which suppresses electron mobility. FTO glass was coated with ZnO thin films by RF-magnetron sputtering; each film was deposited under different $O_2$:Ar ratios and RF-gun power. The optical transmittance of the ZnO thin film depends on the thickness and morphology of ZnO. The conversion efficiency was measured with the maximum value of 5.22% at an Ar:$O_2$ ratio of 1:1 and RF-gun power of 80 W, due to effective prevention of the electron recombination into electrolytes.

결정질 실리콘 태양전지에 적용하기 위한 후면전극 형성에 관한 연구 (An Analysis on rear contact for crystalline silicon solar cell)

  • 권혁용;이재두;김민정;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.91.1-91.1
    • /
    • 2010
  • There are some methods for increasing efficiency of crystalline silicon solar cells. Among them, It is important to reduce the recombination loss of surface for high efficiency. In order to reduce recombination loss is a way to use the BSF(Back Surface Field). The BSF on the back of the p-type wafer forms a p+layer. so, it is prevented to act electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. therefore, open-circuit-voltage and Fill factor(FF) of solar cells are increased. This paper investigates the formation of rear contact process comparing Aluminum-paste(Al-paste) with Aluminum-Metal(99.9%). It is shown that the Aluminum-Metal provides high conductivity and low contact resistance of $21.35m{\Omega}cm$ using the Vacuum evaporation process but, it is difficult to apply the standard industrial process because high Vacuum is needed and it costs a tremendous amount more than Al-paste. On the other hand, using the Al-paste process by screen printing is simple for formation of metal contact and it is possible to produce the standard industrial process. however, it is lower than Aluminum-Metal(99.9) of conductivity because of including mass glass frit. In this study, contact resistances were measured by 4-point prove. each of contact resistances is $21.35m{\Omega}cm$ of Aluminum-Metal and $0.69m{\Omega}cm$ of Al-paste. and then rear contact have been analyzed by Scanning Electron Microscopy(SEM).

  • PDF

Heterosis and Percent Improvement in Survivability, Reproduction and Production Performance of Various Genetic Groups of Temperate x Zebu Crosses in Tropics

  • Singh, Kuldeep;Khanna, A.S.;Sangwan, M.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권6호
    • /
    • pp.794-799
    • /
    • 2003
  • A study was conducted on 2102 records of 808 crossbred cows of various genetic groups maintained under 'All India Coordinated Research Project on Cattle' at C C S Haryana Agricultural University, Hisar, over 25 years period (1968-1993) with an objective to assess and compare the amount of percent improvement and heterotic effect for different performance traits in various genetic groups produced under this programme. Survivability sharply and significantly declined from 1/2 to $3/4^th$ bred and further from $3/4^th$ to inter-se bred. This may be due to periodic and management differences in addition to the higher level of exotic inheritance and decreased heterotic effect over the filial generations. Jersey and Holstein Friesian crosses among 1/2 breds and their 50% inheritance among $3/4^th$ and inter-se breds had highest improvement and heterosis in reproduction and production traits respectively. Among inter se bred genetic groups, BFH (I) had no recombination loss in SP and CI, while FJH (I), JFH (I) and FBH (I) had on recombination loss in AFC, LY, LL and PE. The crossbreeding of zebu cows with exotic breeds brings about spectacular improvement in comparison to the performance of zebu breed, while conventional selection over several generation would lead to only modest improvement. In addition to additive effect, there was sufficient heterosis in Jersey crosses for reproduction and Holstein Friesian crosses for production performance. Three breed crosses with exotic inheritance between 50 and 75 percent incorporating genes (25 to 50%) from both of these breeds is the best combination for stabilization.

Effects of electronic energy deposition on pre-existing defects in 6H-SiC

  • Liao, Wenlong;He, Huan;Li, Yang;Liu, Wenbo;Zang, Hang;Wei, Jianan;He, Chaohui
    • Nuclear Engineering and Technology
    • /
    • 제53권7호
    • /
    • pp.2357-2363
    • /
    • 2021
  • Silicon carbide is widely used in radiation environments due to its excellent properties. However, when exposed to the strong radiation environment constantly, plenty of defects are generated, thus causing the material performance downgrades or failures. In this paper, the two-temperature model (2T-MD) is used to explore the defect recovery process by applying the electronic energy loss (Se) on the pre-damaged system. The effects of defect concentration and the applied electronic energy loss on the defect recovery process are investigated, respectively. The results demonstrate that almost no defect recovery takes place until the defect density in the damage region or the local defect density is large enough, and the probability of defect recovery increases with the defect concentration. Additionally, the results indicate that the defect recovery induced by swift heavy ions is mainly connected with the homogeneous recombination of the carbon defects, while the probability of heterogeneous recombination is mainly dependent on the silicon defects.

단결정 실리콘 태양전지의 후면 전극형성에 관한 비교분석 (Analysis of the Formation of Rear Contact for Monocrystalline Silicon Solar Cells)

  • 권혁용;이재두;김민정;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제23권7호
    • /
    • pp.571-574
    • /
    • 2010
  • Surface recombination loss should be reduced for high efficiency of solar cells. To reduce this loss, the BSF (back surface field) is used. The BSF on the back of the p-type wafer forms a p+layer, which prevents the activity of electrons of the p-area for the rear recombination. As a result, the leakage current is reduced and the rear-contact has a good Ohmic contact. Therefore, the open-circuit-voltage (Voc) and fill factor (FF) of solar cells are increased. This paper investigates the formation of the rear contact process by comparing aluminum-paste (Al-paste) with pure aluminum-metal(99.9%). Under the vacuum evaporation process, pure aluminum-metal(99.9%) provides high conductivity and low contact resistance of $4.2\;m{\Omega}cm$, but It is difficult to apply the standard industrial process to it because high vacuum is needed, and it's more expensive than the commercial equipment. On the other hand, using the Al-paste process by screen printing is simple for the formation of metal contact, and it is possible to produce the standard industrial process. However, Al-paste used in screen printing is lower than the conductivity of pure aluminum-metal(99.9) because of its mass glass frit. In this study, contact resistances were measured by a 4-point probe. The contact resistance of pure aluminum-metal was $4.2\;m{\Omega}cm$ and that of Al-paste was $35.69\;m{\Omega}cm$. Then the rear contact was analyzed by scanning electron microscope (SEM).

The effects of the scattering opacity and the color temperature on numerically modelling of the first peak of type IIb supernovae

  • Park, Seong Hyun;Yoon, Sung-Chul
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.70.1-70.1
    • /
    • 2020
  • A type IIb supernova (SN IIb) is the result of core-collapse of a massive star which lost most of its hydrogen-rich envelope during its evolution. The pre-SN progenitor properties, such as the total radius and the mass of the hydrogen-rich envelope, can widely vary due to the mass-loss history of the progenitors. Optical light curves of SNe IIb are dominated by energy released by the hydrogen recombination and the radioactive decay of 56Ni in the early and late epochs respectively. This may result in distinctive double peaked light curves like the one observed in SN 1993J. The first peak, caused by the hydrogen recombination, can be modelled with numerical simulations providing information on the pre-SN progenitor properties. We compare two radiation-hydrodynamics codes, STELLA and SNEC, that are frequently used in SNe modelling, and investigate the effect of opacity treatment on the temporal evolution of the color temperature of SNe and eventually on the optical light curves. We find that with a proper treatment of the scattering opacity, SNe IIb models exploded from the progenitor models evolved with latest stellar evolution model hardly match the observational data. We also discuss the smaller scale features found in the models during hydrogen recombination phase.

  • PDF

NIR spectroscopy of three class I young stellar objects using IGRINS

  • Sharma, Neha;Lee, Joeng-Eun;Park, Sunkyung;Lee, Soekho;Yoon, Sung-Yong
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.66.3-66.3
    • /
    • 2019
  • We present near-infrared spectroscopic results for three nearby class I sources, IRAS 03445+3242, IRAS 04239+2436 and ESO $H{\alpha}$ 279a. We detected many molecular and atomic line emissions, e.g., $H_2$, [Fe II], Hydrogen Bracket series recombination, Ca I, Na I & CO overtone band, from these sources using the high-resolution Immersion GRating INfrared Spectrometer (IGRINS; R~45,000). Previous studies showed that all the three sources posses actively accreting Keplerian disks. We performed spectral analysis to understand the origin of Hydrogen Bracket series recombination lines. We also estimated the accretion properties and mass loss rates of circumstellar disks for all the three sources.

  • PDF

원자층 증착법으로 형성된 Al2O3 박막의 질소 도핑에 따른 실리콘 표면의 부동화 특성 연구 (Study on the Passivation of Si Surface by Incorporation of Nitrogen in Al2O3 Thin Films Grown by Atomic Layer Deposition)

  • 홍희경;허재영
    • 마이크로전자및패키징학회지
    • /
    • 제22권4호
    • /
    • pp.111-115
    • /
    • 2015
  • 실리콘 태양전지의 효율을 향상하기 위해서는 소수 캐리어의 높은 수명이 필수조건이다. 따라서, 이를 달성하기 위한 실리콘 표면결함을 없애줄 수 있는 부동화(passivation) 기술이 매우 중요하다. 일반적으로 PECVD 법이나 열산화 공정을 통해 얻어진 $SiO_2$ 박막이 부동화 층으로 많이 사용되나 1000도에 이르는 고온 공정과 낮은 열적 안정성이 문제로 여겨진다. 본 연구에서는 원자층 증착법을 이용하여 400도 미만의 저온 공정을 통해 $Al_2O_3$ 부동화 박막을 형성하였다. $Al_2O_3$ 박막은 고유의 음의 고정 전하밀도로 인해 낮은 표면 재결합속도를 보이는 것으로 알려져 있다. 본 연구에서는 질소 도핑을 통해 높은 음의 고정 전하 밀도를 얻고 이를 통해 좀 더 향상된 실리콘 표면 부동화 특성을 얻고자 하였다.

TCAD Simulation of Silicon Pillar Array Solar Cells

  • Lee, Hoong Joo
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.65-69
    • /
    • 2017
  • This paper presents a Technology-CAD (TCAD) simulation of the characteristics of crystalline Si pillar array solar cells. The junction depth and the surface concentration of the solar cells were optimized to obtain the targeted sheet resistance of the emitter region. The diffusion model was determined by calibrating the emitter doping profile of the microscale silicon pillars. The dimension parameters determining the pillar shape, such as width, height, and spacing were varied within a simulation window from ${\sim}2{\mu}m$ to $5{\mu}m$. The simulation showed that increasing pillar width (or diameter) and spacing resulted in the decrease of current density due to surface area loss, light trapping loss, and high reflectance. Although increasing pillar height might improve the chances of light trapping, the recombination loss due to the increase in the carrier's transfer length canceled out the positive effect to the photo-generation component of the current. The silicon pillars were experimentally formed by photoresist patterning and electroless etching. The laboratory results of a fabricated Si pillar solar cell showed the efficiency and the fill factor to be close to the simulation results.

  • PDF