• 제목/요약/키워드: Recombinant vaccine

검색결과 188건 처리시간 0.027초

Immunization effect of recombinant P27/30 protein expressed in Escherichia coli against the hard tick Haemaphysalis longicornis (Acari: Ixodidae) in rabbits

  • You, Myung-Jo
    • Parasites, Hosts and Diseases
    • /
    • 제42권4호
    • /
    • pp.195-200
    • /
    • 2004
  • We investigated the induction of resistance to Haemaphysalis longicornis infestation in rabbits that had been immunized with recombinant H. longicornis P27/30 protein. The success of immunological control methods is dependent upon the use of potential key antigens as tick vaccine candidates. Previously, we cloned a gene encoding 27 kDa and 30 kDa proteins (P27/30) of H. longicornis, and identified P27/30 as a troponin I-like protein. In this study, rabbits that were immunized with recombinant P27/30 expressed in Escherichia coli showed the statistically significant longer feeding duration for larval and adult ticks (P<0.05), low engorgement rates in larval ticks (64.4%), and an apparent reduction in egg weights, which suggest that H. longicornis P27/30 protein is a potential candidate antigen for a tick vaccine. These results demonstrated that the recombinant P27/30 protein might be a useful vaccine candidate antigen for biological control of H. longicornis.

The immune-adjuvant effect and safety of recombinant CC chemokine 1 (rRbCC1) in rock bream, Oplegnathus fasciatus

  • Kwon, Mun-Gyeong;Kim, Ju-Won;Hwang, Seong-Don;Kim, Eun-Gyeong;Park, Dae-Won;Park, Chan-Il
    • 한국어병학회지
    • /
    • 제26권3호
    • /
    • pp.231-240
    • /
    • 2013
  • Adjuvants are immune enhancers that are often used in vaccination to augment the immune response of a vaccine, thereby enhancing the protective immunity against the targeted disease. In the present study, we used the recombinant protein, such as rRbCC1, this protein was produced from rock bream CC chemokine 1. To verify the adjuvant effects of this recombinant protein, the immune responses of rock bream to Streptococcus iniae (S. iniae) FKC vaccination, which alone or in combination with recombinant protein was analyzed and then also performed experimental challenge with live S. iniae. The result of serum agglutination titres was showed relatively low levels however, the efficacy of FKC vaccine still conferred protection against S. iniae. Moreover, the adverse effects result showed that no statistically significant difference was revealed between high concentration injected and non-injected fish groups, generally. The relative percent survival (RPS) of FKC + recombinant vaccination group was significantly higher than that of vaccinated group with FKC alone. After experimental challenge to the rock bream by injection with live bacteria (S. iniae), the FKC + rRbCC1 vaccination group was showed 87.0% RPS, however, the RPS of FKC alone vaccination was 68.2%. The results indicated that the recombinant protein as an adjuvant had a clear synergism to injection vaccine of rock bream.

Evaluation of concurrent vaccinations with recombinant canarypox equine influenza virus and inactivated equine herpesvirus vaccines

  • Dong-Ha, Lee;Eun-bee, Lee;Jong-pil, Seo;Eun-Ju, Ko
    • Journal of Animal Science and Technology
    • /
    • 제64권3호
    • /
    • pp.588-598
    • /
    • 2022
  • Despite vaccination, equine influenza virus (EIV) and equine herpesvirus (EHV) infections still cause highly contagious respiratory diseases in horses. Recently, concurrent vaccination with EIV and EHV was suggested as a new approach; however, there have been no reports of concurrent vaccination with recombinant canarypox EIV and inactivated EHV vaccines. In this study, we aimed to compare the EIV-specific immune responses induced by concurrent administrations of a recombinant canarypox EIV vaccine and an inactivated bivalent EHV vaccine with those induced by a single recombinant canarypox EIV vaccine in experimental horse and mouse models. Serum and peripheral blood mononuclear cells (PBMCs) were collected from immunized animals after vaccination. EIV-specific serum antibody levels, serum hemagglutinin inhibition (HI) titers, and interferon-gamma (IFN-γ) levels were measured by enzyme-linked immunosorbent assay, HI assay, and quantitative polymerase chain reaction, respectively. Concurrent EIV and EHV vaccine administration significantly increased IFN-γ production, without compromising humoral responses. Our data demonstrate that concurrent vaccination with EIV and EHV vaccines can enhance EIV-specific cellular responses in horses.

Comparison of COVID-19 Vaccines Introduced in Korea

  • Lee, Chang-Gun;Lee, Dongsup
    • 대한의생명과학회지
    • /
    • 제28권2호
    • /
    • pp.67-82
    • /
    • 2022
  • The prevalence of SARS-CoV-2 led to inconsistent public health policies that resulted in COVID-19 containment failure. These factors resulted in increased hospitalization and death. To prevent viral spread and achieve herd immunity, the only safe and effective measure is to provide to vaccinates. Ever since the release of the SARS-CoV-2 nucleotide sequence in January of 2020, research centers and pharmaceutical companies from many countries have developed different types of vaccines including mRNA, recombinant protein, and viral vector vaccines. Prior to initiating vaccinations, phase 3 clinical trials are necessary. However, no vaccine has yet to complete a phase 3 clinical trial. Many products obtained "emergency use authorization" from governmental agencies such as WHO, FDA etc. The Korean government authorized the use of five different vaccines. The viral vector vaccine of Oxford/AstraZeneca and the Janssen showed effectiveness of 76% and 66.9%, respectively. The mRNA vaccine of Pfizer-BioNTech and Moderna showed effectiveness of 95% and 94.1%, respectively. The protein recombinant vaccine of Novavax showed an effectiveness of 90.4%. In this review, we compared the characteristics, production platform, synthesis principles, authorization, protective effects, immune responses, clinical trials and adverse effects of five different vaccines currently used in Korea. Through this review, we conceptualize the importance of selecting the optimal vaccine to prevent the COVID-19 pandemic.

Expression and evaluation of porcine circovirus type 2 capsid protein mediated by recombinant adeno-associated virus 8

  • Li, Shuang;Wang, Bo;Jiang, Shun;Lan, Xiaohui;Qiao, Yongbo;Nie, Jiaojiao;Yin, Yuhe;Shi, Yuhua;Kong, Wei;Shan, Yaming
    • Journal of Veterinary Science
    • /
    • 제22권1호
    • /
    • pp.8.1-8.11
    • /
    • 2021
  • Background: Porcine circovirus type 2 (PCV2) is an important infectious pathogen implicated in porcine circovirus-associated diseases (PCVAD), which has caused significant economic losses in the pig industry worldwide. Objectives: A suitable viral vector-mediated gene transfer platform for the expression of the capsid protein (Cap) is an attractive strategy. Methods: In the present study, a recombinant adeno-associated virus 8 (rAAV8) vector was constructed to encode Cap (Cap-rAAV) in vitro and in vivo after gene transfer. Results: The obtained results showed that Cap could be expressed in HEK293T cells and BABL/c mice. The results of lymphocytes proliferative, as well as immunoglobulin G (IgG) 2a and interferon-γ showed strong cellular immune responses induced by Cap-rAAV. The enzyme-linked immunosorbent assay titers obtained and the IgG1 and interleukin-4 levels showed that humoral immune responses were also induced by Cap-rAAV. Altogether, these results demonstrated that the rAAV8 vaccine Cap-rAAV can induce strong cellular and humoral immune responses, indicating a potential rAAV8 vaccine against PCV2. Conclusions: The injection of rAAV8 encoding PCV2 Cap genes into muscle tissue can ensure long-term, continuous, and systemic expression.

Production of Recombinant Anti-Cancer Vaccines in Plants

  • Lee, Jeong Hwan;Ko, Kisung
    • Biomolecules & Therapeutics
    • /
    • 제25권4호
    • /
    • pp.345-353
    • /
    • 2017
  • Plant expression systems have been developed to produce anti-cancer vaccines. Plants have several advantages as bioreactors for the production of subunit vaccines: they are considered safe, and may be used to produce recombinant proteins at low production cost. However, several technical issues hinder large-scale production of anti-cancer vaccines in plants. The present review covers design strategies to enhance the immunogenicity and therapeutic potency of anti-cancer vaccines, methods to increase vaccine-expressing plant biomass, and challenges facing the production of anti-cancer vaccines in plants. Specifically, the issues such as low expression levels and plant-specific glycosylation are described, along with their potential solutions.

Studies on Hypersensitivity of Recombinant Hepatitis B Vaccine (LBD-008) in Mice and Guinea pigs

  • Park, Jong-Il;Ha, Chang-Su;Han, Sang-Seop
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.108-113
    • /
    • 1994
  • Toxicity study of recombinant hepatitis B vaccine (LBD-008), a newly developed drug for acute and chronic hepatitis, was investigated in mice and guinea pigs. 1. Mice showed no production of antibodies against LBD-008 inoculated with aluminum hydroxide gel (Alum) as an adjuvant, judged by the heterologous anaphylaxis (PCA) test using rats. On the other hand, antibodies against ovalbumin (OVA) inoculated with alum were definitely detected. 2. In the studies with guinea pigs, both the inoculation of LBD-008 only and of LBD-008 with complete Freund's adjuvant (CFA) as an adjuvant did not produce positive reactions in any of homologous active systemic anaphylaxis (ASA). On the other hand, the inoculation of ovalbumin with complete Freund's adjuvant (CFA) produced positive reaction in both of PCA and ASA. 3. These findings suggested that LBD-008 has no antigenic potential in mice or guinea pigs.

  • PDF

Expression of Helicobacter pylori urease in plants to use as an edible vaccine

  • 강귀현;한소천;강태진;양문식
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XIII)
    • /
    • pp.186-189
    • /
    • 2003
  • Helicobacter pylori is the etiologic agent of human gastritis and peptic ulceration and produces urease as the major protein component on its surface. H. pylori urease is known to serve as a potent immunogen as well as major virulence factor. In order to express the recombinant urease in tobacco plants, a DNA fragment containing the minimal H. pylori urease gene cluster was subcloned into a plant expression vector. The recombinant vector was transformed to tobacco plants. The integration of the recombinant plasmids into tobacco chromosomal genome was verified by genomic PCR. Expression to mRNA was confirmed by Northern blot analysis, and expression to recombinant urease protein was observed by Western blot analysis. These results showed that the recombinant urease can be produced in tobacco plants and will be tested for immune response to use as an edible vaccine.

  • PDF

Staphylococcus aureus의 재조합 fibronectin-binding protein의 생산 (Production of the recombinant fibronectin-binding protein of Staphylococcus aureus)

  • 김두;정자룡;박희명;한홍율
    • 대한수의학회지
    • /
    • 제37권4호
    • /
    • pp.875-882
    • /
    • 1997
  • To produce the recombinant fibronectin-binding protein(FnBP) for development of subunit vaccine against Staphylococcus aureus. The fnbp gene was amplified from the chromosomal DNA of S aureus KNU 196 strain using the polymerase chain reaction, and cloned into pGEX-4T-2. Then, the recombinant FnBP fused with glutathione-S-transferase was produced in E coli, purified by affinity chromatography, and identified its antigenicity and immunogenicity by Western blot. The recombinant FnBP produced in this study is considered to have the same property of native FnBP purified from S aureus, and is expected to be useful as a candidate for S aureus subunit vaccine.

  • PDF

Development of a Novel Subunit Vaccine Targeting Fusobacterium nucleatum FomA Porin Based on In Silico Analysis

  • Jeong, Kwangjoon;Sao, Puth;Park, Mi-Jin;Lee, Hansol;Kim, Shi Ho;Rhee, Joon Haeng;Lee, Shee Eun
    • International Journal of Oral Biology
    • /
    • 제42권2호
    • /
    • pp.63-70
    • /
    • 2017
  • Selecting an appropriate antigen with optimal immunogenicity and physicochemical properties is a pivotal factor to develop a protein based subunit vaccine. Despite rapid progress in modern molecular cloning and recombinant protein technology, there remains a huge challenge for purifying and using protein antigens rich in hydrophobic domains, such as membrane associated proteins. To overcome current limitations using hydrophobic proteins as vaccine antigens, we adopted in silico analyses which included bioinformatic prediction and sequence-based protein 3D structure modeling, to develop a novel periodontitis subunit vaccine against the outer membrane protein FomA of Fusobacterium nucleatum. To generate an optimal antigen candidate, we predicted hydrophilicity and B cell epitope parameter by querying to web-based databases, and designed a truncated FomA (tFomA) candidate with better solubility and preserved B cell epitopes. The truncated recombinant protein was engineered to expose epitopes on the surface through simulating amino acid sequence-based 3D folding in aqueous environment. The recombinant tFomA was further expressed and purified, and its immunological properties were evaluated. In the mice intranasal vaccination study, tFomA significantly induced antigen-specific IgG and sIgA responses in both systemic and oral-mucosal compartments, respectively. Our results testify that intelligent in silico designing of antigens provide amenable vaccine epitopes from hard-to-manufacture hydrophobic domain rich microbial antigens.