• Title/Summary/Keyword: Recombinant inbred lines

Search Result 74, Processing Time 0.022 seconds

Characterization of Purple-discolored, Uppermost Leaves of Soybean; QTL Mapping, HyperspectraI Imaging, and TEM Observation

  • JaeJin Lee;Jeongsun Lee;Seongha Kwon;Heejin You;Sungwoo Lee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.187-187
    • /
    • 2022
  • Purple-discoloration of the uppermost leaves has been observed in some soybean cultivars in recent years. The purpose of this study was to characterize the novel phenotypic changes between the uppermost and middle leaves via multiple approaches. First, quantitative trait loci mapping was conducted to detect loci associated with the novel phenotype using 85 recombinant inbred lines (RILs) of the 'Daepung' × PI 96983 population. 180K SNP data, a major quantitative trait locus (QTL) was identified at around 60 cM of chromosome 6, which accounts for 56% of total phenotypic variance. The genomic interval is about ~700kb, and a list of annotated genes includes the T-gene which is known to control pubescence and seed coat color and is presumed to encode flavonoid 35-hydroxylase (F3'H). Based on Hyperspectral imaging, the reflectance at 528-554 nm wavelength band was extremely reduced in the uppermost leaves compared to the middle (green leaves), which is presumed die to the accumulation of anthocyanins. In addition, purple-discolored leaf tissues were observed and compared to normal leaves using a transmission electronic microscope (TEM). Base on observations of the cell organelles, the purple-discolored uppermost leaves had many pigments formed in the epidermal cells unlike the normal middle leaves, and the cell wall thickness was twice as thick in the discolored leaves. The thickness of the thylakoid layer in the chloroplast the number of starch grains, the size of starch all decreased in the discolored leaves, while the number of plastoglobule and mitochondria increased.

  • PDF

Variation of Grain Quality and Grain Filling Rapidity Milyang 23 / Gihobyeo Recombinant Inbred Lines (벼 밀양 23호$\times$기호벼의 재조합 자식계통에서 초기급속등숙과 미질 특성)

  • 곽태순;여준환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.3
    • /
    • pp.160-166
    • /
    • 2004
  • This study was carried out to get the basic informations regarding the varietal variations for the physicochemical properties such as protein content, amylose content, fatty acid content, grain quality values and color properties such as lightness value, chroma and hue for the 164 recombinant inbred lines(RILs) of Milyang 23 and Gihobyeo(M/G) at the experimental farm in the Sangji University. The principal component analysis and heritability study were conducted for this experiments. The rapidity of grain filling(RCF) for the 164 M/G RILs could be classified into four groups such as slow maturing group less than 41%, mid-slow maturing group 41∼60%, fast maturing group 61∼80% and very fast maturing group more than 81% based on the rapidity of grain filling rate. The slow maturing group of RGF showed a little bit higher protein content 9.1%, compared to the other RGF groups. However, the amylose content of all the RGF groups revealed the same content by the groups. The very fast maturing group of RGF showed longer grain length in brown rice compared to other RGF varietal groups, in case of grain width in brown rice showed shorter than any other groups. The alkali digestive value which was so much related to gelatinization temperature showed 3.40 degree at fast maturing group of RGF in M/G RILs. However, the very fast maturing group of RGF revealed 4.31 degree of alkali digestive value. The principal component analysis was performed by the chemical and color properties such as quality value, protein content, amylose content, alkali digestive value, fatty acid content, lightness value, chroma and hue for M/G RILs. The first principal component was able to explained upto 36% to total informations. It was corresponded to quality value, protein content, amylose content, fatty acid content, lightness value and a-value(green -1 red). The characters regarding grain quality showed high heritable properties more than 75% of heritability, but color characters appeared relatively lower heritability compared to grain quality.

Analysis of Quantitative Trait Loci (QTLs) for Seed Size and Fatty Acid Composition Using Recombinant Inbred Lines in Soybean (콩 재조합자식계통을 이용한 콩 종자의 크기와 지방산 조성의 양적 형질 유전자좌 분석)

  • Kim, Hyeun-Kyeung;Kim, Yong-Chul;Kim, Sun-Tae;Son, Beung-Gu;Choi, Yong-Whan;Kang, Jum-Soon;Park, Young-Hoon;Cho, Young-Son;Choi, In-Soo
    • Journal of Life Science
    • /
    • v.20 no.8
    • /
    • pp.1186-1192
    • /
    • 2010
  • Soybean [Glycine max(L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvements in economic traits, such as quality and oil constituents, arethe most important objectives in soybean breeding. The objective of this study was to identify quantitative trait loci (QTLs) that control seed size and fatty acid contents in soybean. 115 $F_{2:10}$ recombinant inbred lines (RIL) developed from a cross of 'Keunolkong' and 'Iksan10' were used. Narrow-sense heritability estimates based on a plot mean on 100 seed weight, saturated fatty acid (palmitic acid + stearic acid), and oleic, linoleic, and linolenic acid content were 0.72, 0.60, 0.83, 0.77 and 0.81, respectively. The 100 seeds weight was related to seven QTLs located on chromosomes 1, 3, 8, 9, 16 and 17. Two independent QTLs for saturated fatty acid content were identified on chromosomes 17 and 19. Five independent QTLs for oleic acid content wereidentified on chromosomes7, 11, 14, 16 and 19. Five QTLs for linoleic acid content were located on chromosomes 2, 11, 14, 16 and 19. Three QTLs for linolenic acid content were located on chromosomes 8, 10 and 19. Oleic, linoleic, and linolenic acid had one major common QTL on chromosome 19. Thus, linoleic and linolenic acid content were identified as common QTLs.

Development of Elite Lines with Improved Eating Quality Using RIL Population Derived from the Korean Weedy Rice, Wandoaengmi6 (국내 잡초벼(완도앵미6) 유래 RILs 집단의 식미 관련 특성분석 및 우량계통 선발)

  • Kim, Suk-Man;Park, Seul-Gi;Park, Hyun-Su;Baek, Man-Kee;Jeong, Jong-Min;Cho, Young-Chan;Suh, Jung-Pil;Lee, Keon-Mi;Lee, Chang-Min;Kim, Choon-Song
    • Journal of the Korean Society of International Agriculture
    • /
    • v.31 no.4
    • /
    • pp.428-436
    • /
    • 2019
  • As the main objective of rice breeding programs, rice eating quality is one of critical factors directly determining the market price and the consumer preference. However, the genetic complexity of eating quality and the difficulty in accurate evaluation often constrain improvement of the eating quality in rice breeding programs. In addition, given that the rice eating quality of current cultivars has already reached some high-level, diversifying of genetic resources are demanded more than ever to improve the rice eating quality. In this study, we developed a recombinant inbred lines (RILs) population derive from Wandoaengmi6, a japonica-type Korean weedy rice with high eating quality and a high degree of glossiness of cooked rice. Year-to-year correlations between the traits in three years were shown normal distribution for major agronomic traits and physicochemical characteristics. After evaluating tested traits related to eating quality procedure, a total of ten lines were ultimately selected from the population. Increasement of the taste of cooked rice (TA) and the overall eating quality (OE) were confirmed in the selected lines, which are caused by alleles derived from Wandoaengmi6 without any linkage drag. These results indicate that the utility of wide genomic resources in Korean landrace could be of application in various rice breeding programs and countermeasure to contribute to properly response to climate change.

Fine Mapping of the Rice Bph1 Gene, which Confers Resistance to the Brown Planthopper (Nilaparvata lugens Stal), and Development of STS Markers for Marker-assisted Selection

  • Cha, Young-Soon;Ji, Hyeonso;Yun, Doh-Won;Ahn, Byoung-Ohg;Lee, Myung Chul;Suh, Seok-Cheol;Lee, Chun Seok;Ahn, Eok Keun;Jeon, Yong-Hee;Jin, Il-Doo;Sohn, Jae-Keun;Koh, Hee-Jong;Eun, Moo-Young
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.146-151
    • /
    • 2008
  • The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.

Identification of Quantitative Trait Loci Associated with Leaf Length. Width and Length/width Ratio in Two Recombinant Inbred Lines of Soybean (Glycine max L.) (두 집단의 재조합 근친교잡 계통 (RIL) 콩에서 엽장과 엽폭 및 장폭비와 관련된 양적헝질 유전자좌 분석)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.821-828
    • /
    • 2004
  • The increasing apparent photosynthetic rate per leaf area may improve seed yield in soybean. Leaf area, length and width are related to the photosynthetic capability of the plant. In this study, two populations derived from the cross of Keunolkong, Shinpaldalkong and Iksanl0 were evaluated with simple sequence repeat (SSR) markers to identify length, width and length/width ratio of leaf. Leaf length/width ratio were significantly negative correlation with leaf width in K/S and K/I populations. In the K/S population, two minor QTLs for leaf length (LL) were found on LG Dlb+W and 1. Two QTLs on LG J and L were related to LL in K/I population. Two and three minor QTLs were identified in leaf width with total phenotypic variation of 13% and 18.04 in K/S and K/I populations, respectively. The leaf length/width ratio, two QTLs on LG I and L, and three QTLs on LG Cl, E and L were related to K/S and K/I populations, respectively. Thus it is assumed that the leaf traits are very much dependent on the genotype used and different breeding approach should be considered for the selection of favorite leaf traits in soybean breeding programs.

Simple Sequence Repeat Markers Linked to Quantitative Trait Loci Controlling Seed Weight, Protein and Oil Contents in Soybean (콩에서 종실의 무게와 oil 및 단백질 함량을 조절하는 양적 형질 유전자좌와 연관된 simple sequence repeat marker)

  • Kim, Hyeun-Kyeung;Kang, Sung-Taeg;Choung, Myoung-Gun;Jung, Chan-Sik;Oh, Ki-Won;Baek, In-Youl;Son, Beung-Gu
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.949-954
    • /
    • 2006
  • Soybean [Glycine max (L.) Merr.] is an important crop, accounting for 48% of the world market in oil crops. Improvement of the quality and quantity of soybean seed constituents is one of the most important objectives in soybean breeding. Protein content and seed size are important properties to determine the quality of tofu and soy sprouts respectively. The objective of this study was to identify quantitative trait loci (QTLs) that control seed weight, protein and oil content in soybean. The 117 $F_{2:10}$ recombinant inbred lines (RlL) developed from a cross of 'Keunolkong' and 'Shinpaldalkong' were used. Narrow-sense heritability estimates based on a plot mean on seed weight, protein and oil content were 0.8, 0.78 and 0.71, respectively. Four independent QTLs for seed weight were identified from linkage group (LG) F, I and K. Five QTL for protein content were located on LG D1b, E, H, I and L. Oil content was related with six QTLs located on LG D1b, E, G, I, J and N. Protein and oil content have three common QTLs on LG D1b, E and I. Thus, we identified major loci improving soybean seed quality.

Correlation Analysis between Head Rice Ratio and Agronomic Traits in RILs for Developing A Promising Rice Culitivar Adaptable to The Early-Transplanting Cultivation (조기재배 적합 벼품종 육성을 위한 재조합집단에서 완전미율과 농업형질과의 상관분석)

  • Lee, Jong-Hee;Choi, Jun-Hyun;Kim, Sang-Yeol;Lee, Ji-Yoon;Kim, Choon-Song;Yeo, Un-Sang;Song, You-Chen;Sohn, Young-Bo;Oh, Myung-Kyu;Kang, Hang-Won;Nam, Min-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • In this study, we conducted to identify predictive parameters affecting the head rice ratio for developing high quality rice cultivar adaptable to the early-transplanting cultivation. The recombinant inbred lines (RILs) population from a cross between the parents of Pungmi and Koshihikari was used for test materials. Variations were observed in most of the measurements, eg culm length (ranging from 51.0 cm to 97.0 cm), amylose content (14.0~20.1%), protein content (5.2~7.4%), pasting properties (peak viscosity, 227.2~309.8 RVU) and head rice ratio (67.7~96.7%). Significant correlations between head rice ratio versus culm length (0.443) and head rice ratio versus protein content (-0.458) were detected in RIL population. However, culm length was negatively related to lodging tolerance. In order to develop a commercially suitable cultivar, selection for short culm and high head rice ratio of rice grains with physiochemical properties such as protein content, amylase content and taste value should be considered. This results can be used to increase the efficiency of breeding program for developing a new early-maturing rice variety adaptable to early transplanting cultivation in Korea.

Locating QTLs controlling overwintering seedling rate in perennial glutinous rice 89-1 (Oryza sativa L.)

  • Deng, Xiaoshu;Gan, Lu;Liu, Yan;Luo, Ancai;Jin, Liang;Chen, Jiao;Tang, Ruyu;Lei, Lixia;Tang, Jianghong;Zhang, Jiani;Zhao, Zhengwu
    • Genes and Genomics
    • /
    • v.40 no.12
    • /
    • pp.1351-1361
    • /
    • 2018
  • A new cold tolerant germplasm resource named glutinous rice 89-1 (Gr89-1, Oryza sativa L.) can overwinter using axillary buds, with these buds being ratooned the following year. The overwintering seedling rate (OSR) is an important factor for evaluating cold tolerance. Many quantitative trait loci (QTLs) controlling cold tolerance at different growth stages in rice have been identified, with some of these QTLs being successfully cloned. However, no QTLs conferring to the OSR trait have been located in the perennial O. sativa L. To identify QTLs associated with OSR and to evaluate cold tolerance. 286 $F_{12}$ recombinant inbred lines (RILs) derived from a cross between the cold tolerant variety Gr89-1 and cold sensitive variety Shuhui527 (SH527) were used. A total of 198 polymorphic simple sequence repeat (SSR) markers that were distributed uniformly on 12 chromosomes were used to construct the linkage map. The gene ontology (GO) annotation of the major QTL was performed through the rice genome annotation project system. Three main-effect QTLs (qOSR2, qOSR3, and qOSR8) were detected and mapped on chromosomes 2, 3, and 8, respectively. These QTLs were located in the interval of RM14208 (35,160,202 base pairs (bp))-RM208 (35,520,147 bp), RM218 (8,375,236 bp)-RM232 (9,755,778 bp), and RM5891 (24,626,930 bp)-RM23608 (25,355,519 bp), and explained 19.6%, 9.3%, and 11.8% of the phenotypic variations, respectively. The qOSR2 QTL displayed the largest effect, with a logarithm of odds score (LOD) of 5.5. A total of 47 candidate genes on the qOSR2 locus were associated with 219 GO terms. Among these candidate genes, 11 were related to cell membrane, 7 were associated with cold stress, and 3 were involved in response to stress and biotic stimulus. OsPIP1;3 was the only one candidate gene related to stress, biotic stimulus, cold stress, and encoding a cell membrane protein. After QTL mapping, a total of three main-effect QTLs-qOSR2, qOSR3, and qOSR8-were detected on chromosomes 2, 3, and 8, respectively. Among these, qOSR2 explained the highest phenotypic variance. All the QTLs elite traits come from the cold resistance parent Gr89-1. OsPIP1;3 might be a candidate gene of qOSR2.

Identification of Quantitative Trait Loci Associated with Resistance to Bacterial Pustule (Xanthomonas axonopodis pv. glycines) in Soybean (SSR 분자표지이용 콩 불마름병 저항성 관여 양적형질 유전자좌(QTL) 분석)

  • Seo, MinJung;Kang, Sung-Taeg;Moon, Jung-Kyung;Lee, Seukki;Kim, Yul-Ho;Jeong, Kwang-Ho;Yun, Hong-Tae
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.456-462
    • /
    • 2009
  • Bacterial pustule (BP), caused by Xanthomonas axonopodis pv. glycines, is prevalent disease in major soybean production areas. BP can reduce seed yield as well as seed quality. To identify the genomic region associated with the resistance to BP, QTL analysis was conducted using $F_{10}$ RIL (recombinant inbred lines) population, Keunolkong${\times}$Shinpaldalkong. Four QTLs for BP disease were identified on the linkage group B2, D2, I and K in field accounts for 36.4% of the phenotypic variation. Especially, QTL at near of Satt135 on LG D2 was identified in green house experiment explaining 20.9% of the phenotypic variation was found to be a major QTL conferring BP. One of these QTLs, Satt135 on the LG D2, was also identified in green house experiment. In both field and green house condition, the position of major QTL for BP was detected between Satt135 and Satt397 on the LG D2. The major QTL for BP may be used for minimizing soybean BP through effective marker-assisted selection (MAS).