• Title/Summary/Keyword: Recombinant human epidermal growth factor

Search Result 57, Processing Time 0.024 seconds

Development of a Quantitative ELISA for Anti HER-2 Antibodies using Human HER-2 Recombinant Proteins (인간 HER-2 재조합 단백질을 사용한 항 HER-2 항체 단백질의 ELISA 정량 방법 개발)

  • Jung, Sun-Ki;Ryu, Chang-Seon;Choung, Kyu-Jin;Song, Gyu-Yong;Kim, Sang-Kyum
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.16-21
    • /
    • 2011
  • HER-2 (Human Epidermal Growth Factor Receptor-2) is a protein giving higher aggressiveness in human breast cancers. Trastuzumab is a monoclonal antibody that targets HER-2 and is known to extend survival across all stages of HER2-positive breast cancer. In this study, we attempted to development of a quantitative ELISA (Enzyme-Linked ImmunoSorbent Assay) for evaluating anti HER-2 antibodies using human HER-2 recombinant proteins to support antibody producing processes and pharmacokinetic studies. We established direct or indirect ELISA method for the trastuzumab-like protein combined human recombinant HER-2. The ELISA method will prove to be great value in quantitating anti-HER-2 antibodies levels for developing anticancer antibodies.

Effect of Recombinant Human Epidermal Growth Factor(DWP 401) on Gastric Secretion and Ulcers in Rats (재조합 인간 상피세포 성장인자(DWP 401)의 흰쥐 위액분비 및 궤양에의 작용)

  • Lee, Eun-Bang;Cheon, Seon-A;Lee, Eun-Sim;Kim, Ok-Gyeong
    • YAKHAK HOEJI
    • /
    • v.40 no.4
    • /
    • pp.456-461
    • /
    • 1996
  • The effects of human epidermal growth factor(EGF) which was produced by recombinant DNA technique was investigated on gastric secretion, gastric lesion and ulcer models in rats. The EGF showed significant inhibition of secretion of gastric juice and total acid output, at 0.4mg/kg, id and also inhibited Shay ulceration at 0.4mg/kg, id in rats. The lesion induced by absolute ethanol was significantly reduced by oral administration of EGF at 0.4mg/kg. Likewise, EGF caused significant inhibition of indomethacin induced gastric ulcer at oral doses of 0.2 and 0.4mg/kg. The EGF produced dose-dependent inhibition of gastric ulcer induced by acidified aspirin, but showed no significant inhibition at oral doses of 0.1, 0.2 and 0.4mg/kg. The chronic gastric ulcer induced by injection of 20% acetic acid solution was significantly reduced by oral doses of 0.1 and 0.4mg/kg of EGF. Duodenal ulcer induced by mepirizole was dose-dependently inhibited by oral doses of 0.1, 0.2 and 0.4mg/kg of EGF. These data suggest that EGF possesses pronounced inhibitory action in gastric ulcer and duodenal ulcer of rats.

  • PDF

Recombinant Human Epidermal Growth Factor (rhEGF)-loaded Solid Lipid Nanoparticles: Fabrication and Their Skin Accumulation Properties for Topical rhEGF Delivery

  • Hwang, Hee-Jin;Han, Sunhui;Jeon, Sangok;Seo, Joeun;Oh, Dongho;Cho, Seong-Wan;Choi, Young Wook;Lee, Sangkil
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2290-2294
    • /
    • 2014
  • For the present study, rhEGF was encapsulated into solid lipid nanoparticles (SLNs). The SLNs were prepared by the $W_1/O/W_2$ double emulsification method combined with the high pressure homogenization method and the physical properties such as particle size, zeta-potential and encapsulation efficiency were measured. The overall particle morphology of SLNs was investigated using a transmission electron microscopy (TEM). The percutaneous skin permeation and accumulation property of rhEGF was evaluated using Franz diffusion cell system along with confocal laser scanning microscopy (CLSM). The mean particle size of rhEGF-loaded SLNs was $104.00{\pm}3.99nm$ and the zeta-potential value was in the range of -$36.99{\pm}0.54mV$, providing a good colloidal stability. The TEM image revealed a spherical shape of SLNs about 100 nm and the encapsulation efficiency was $18.47{\pm}0.22%$. The skin accumulation of rhEGF was enhanced by SLNs. CLSM image analysis provided that the rhEGF rat skin accumulation is facilitated by an entry of SLNs through the pores of skin.

Embryo and Fetal Developmental toxicity Study on Recombinant Human Epidermal Growth Factor (rhEGF) in Rats (재조합 인간상피세포 성장인자(rhEGF, DWP401)의 배${\cdot}$태자발달 독성 연구)

  • Park, Kui-Le;Han, Soon-Young;Shin, Jae-Ho;Lee, Yoo-Mie;Park, Hee-Jung;Jang, Seung-Jae
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.534-539
    • /
    • 1998
  • Effect of recombinant human epidermal growth factor (rhEGF, DWP401) on fetal external, visceral and skeletal malformation during organogenesis was examined. Pregnant Sprauge-Daw ley rats were administered with 0.2, 1 and 5mg/kg/day subcutaneously on gestation day 6 through 16. Dams were sacrified at 20th day of gestation. Materal body weight, food consumption and clinical observation were not changed. Significant dose-dependent increase of relative and absolute liver weight were observed in the treatment group, whereas other organ weights were not changed. Placental weight of 1 and 5mg/kg/day group and number of resorption in 5mg/kg/day treatment group were significantly increased. External and visceral malformation of fetuses were not observed with treatment. However, skeletal variations(increase of asymmetry sternebrae, decrease of dumb-bell and asymmetry sternbrae at 5mg/kg/day, and fused stemebrae at 5mg/kg/day) were observed. These results showed that rhEGF (DWP401) may not have embryo and/or fetal developmental toxicity effect in rats.

  • PDF

Effects of Recombinant Human Epidermal Growth Factor on the Proliferationand Radiation Survival of Human Fibroblast Cell Lines in Vitro (재조합 표피성장인자가 방사선이 조사된 섬유아세포 증식에 미치는 영향)

  • Kim, Hyun-Sook;Kang, Ki-Mun;Lee, Sang-Wook;Na, Jae-Boem;Chai, Gyu-Young
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.179-184
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To explore the effect of recombinant human EGF on the proliferation and survival of human fibroblast cell lines following irradiation. $\underline{Materials\;and\;Methods}$: Fibroblast was originated human skin and primary cultured. The trypan blue stain assay and MTT assay were used to study the proliferative effects of EGF on human fibroblast cell lines in vitro. An incubation of fibroblasts with rhEGF for 24 hours immediately after irradiation was counted everyday. Cell cycle distributions were analyzed by FACS analysis. $\underline{Results}$: Number of fibroblast was significantly more increased rhEGF (1.0 nM, 10 nM, 100 nM, 1,000 nM) treated cell than control after 8 Gy irradiation. Most effective dose of rhEGF was at 160 nM. These survival differences were maintained at 1 week later. Proportion of S phase was significantly increased on rhEGF treated cells. $\underline{Conclusion}$: rhEGF cause increased fibroblast proliferation following irradiation. We expect that rhEGF was effective for radiation induced wound healing.

Large-scale purification and single-dose oral-toxicity study of human thioredoxin and epidermal growth factor introduced into two different genetically modified soybean varieties

  • Jung-Ho, Park
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1003-1013
    • /
    • 2021
  • Thioredoxin (TRX) protein is an antioxidant responsible for reducing other proteins by exchanging cysteine thiol-disulfide and is also known for its anti-allergic and anti-aging properties. On the other hand, epidermal growth factor (EGF) is an important material used in the cosmetics industry and an essential protein necessary for dermal wound healing facilitated by the proliferation and migration of keratinocytes. EGF also assists in the formation of granulation tissues and stimulates the motility of fibroblasts. Hence, genetically modified soybeans were developed to overexpress these industrially important proteins for mass production. A single-dose oral-toxicity-based study was conducted to evaluate the potential toxic effects of TRX and EGF proteins, as safety assessments are necessary for the commercial use of seed-specific protein-expressing transgenic soybeans. To achieve this rationale, TRX and EGF proteins were mass purified from recombinant E. coli. The single-dose oral-toxicity tests of the TRX and EGF proteins were carried out in six-week old male and female Institute of Cancer Research (ICR) mice. The initial evaluation of the single-dose TRF and EGF treatments was based on monitoring the toxicity signatures and mortality rates among the mice, and the resultant mortality rates did not show any specific clinical symptoms related to the proteins. Furthermore, no significant differences were observed in the weights between the treatment and control groups of male and female ICR mice. After 14 days of treatment, no differences were observed in the autopsy reports between the various treatment and control groups. These results suggest that the minimum lethal dose of TRX and EGF proteins is higher than the allowed 2,000 mg·kg-1 limit.

Development of Dermal Transduction Epidermal Growth Factor (EGF) Using A Skin Penetrating Functional Peptide (피부투과 기능성 펩타이드를 이용한 경피투과성 상피세포성장인자의 개발)

  • Kang, Jin Sun;La, Ha Na;Bak, Sun Uk;Eom, Hyo Jung;Lee, Byung Kyu;Shin, Hee Je
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.2
    • /
    • pp.175-184
    • /
    • 2019
  • The epidermal growth factor (EGF) has a intrinsic function of inducing growth and proliferation of cells through interacting with cell membrane receptors in human epidermis and dermis layer. These functions of EGF are used as a main ingredient for wound healing medicines and anti-aging cosmetics. As a cosmetic ingredient, the EGF has a problem in exhibiting its natural efficacy due to the lack of the ability to penetrate through the stratum corneum, which is known as the skin barrier. In this study, a recombinant human epidermal growth factor ($MTD_{151}-EGF$) fused with the macromolecule transduction domain $(MTD)_{151}$ with the skin penetration ability was developed to improve the skin penetration efficiency of the EGF. Expression of $MTD_{151}-EGF$ was performed in E. coli transformed with a vector encoding the $MTD_{151}-EGF$ gene and then purified. The purified $MTD_{151}-EGF$ was evaluated using cell proliferation assay, cytotoxicity test and skin penetration test by franz diffusion cell assay and artificial skin. Cell proliferation activity of $MTD_{151}-EGF$ purified to high purity of 99% or above was equivalent to the EGF or better, and cytotoxicity was not observed. In addition, the $MTD_{151}-EGF$ showed an excellent penetration efficiency compared to the EGF in the skin penetration test with EGF and $MTD_{151}-EGF$ labeled by FITC in an artificial skin penetration model. Based on the quantitative analysis of the penetrating substance using franz diffusion cell assay, the amount of penetration was about 16 times more than that of EGF. These results can be regarded as an effective alternative to improve the existing physical transdermal penetration method related to the use of various active ingredients for cosmetics.

Optimization of growth inducing factors for colony forming and attachment of bone marrow-derived mesenchymal stem cells regarding bioengineering application

  • Quan, Hongxuan;Kim, Seong-Kyun;Heo, Seong-Joo;Koak, Jai-Young;Lee, Joo-Hee
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.5
    • /
    • pp.379-386
    • /
    • 2014
  • PURPOSE. These days, mesenchymal stem cells (MSCs) have received worldwide attention because of their potentiality in tissue engineering for implant dentistry. The purpose of this study was to evaluate various growth inducing factors in media for improvement of acquisition of bone marrow mesenchymal stem cells (BMMSCs) and colony forming unit-fibroblast (CFU-F). MATERIALS AND METHODS. The mouse BMMSCs were freshly obtained from female C3H mouse femur and tibia. The cells seeded at the density of $10^6$/dish in media supplemented with different density of fetal bovine serum (FBS), $1{\alpha}$, 25-dihydroxyvitamin (VD3) and recombinant human epidermal growth factor (rhEGF). After 14 days, CFU-F assay was conducted to analyze the cell attachment and proliferation, and moreover for VD3, the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay was additionally conducted. RESULTS. The cell proliferation was increased with the increase of FBS concentration (P<.05). The cell proliferation was highest at the density of 20 ng/mL rhEGF compared with 0 ng/mL and 200 ng/mL rhEGF (P<.05). For VD3, although the colony number was increased with the increase of its concentration, the difference was not statistically significant (P>.05). CONCLUTION. FBS played the main role in cell attachment and growth, and the growth factor like rhEGF played the additional effect. However, VD3 did not have much efficacy compare with the other two factors. Improvement of the conditions could be adopted to acquire more functional MSCs to apply into bony defect around implants easily.

Effects of Recombinant Human Erythropoietin Treatment in Male Cynomolgus (Macaca fascicularis) Monkeys (II): Gene Expression Profiling in Spleen (게잡이 원숭이에서 Recombinant Human Erythropoietin의 4주간 투여 후 비장 유전자 발현 연구)

  • Yoon, Seok-Joo;Hwang, Ji-Yoon;Lim, Jung-Sun;Jeong, Sun-Young;Kim, Yong-Bum;Kim, Dal-Hyun;Kwon, Myung-Sang;Han, Sang-Seop;Kim, Choong-Yong
    • Toxicological Research
    • /
    • v.21 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • We investigated effects of recombinant human erythropoietin (rHuEPO) on profiles of mRNA transcripts in 6 male cynomolgus (M. fascicularis) monkey's spleen for 4 weeks. Six monkeys, composed of control and treatment group (Control : M1, M2, M3: Treatment : M4, M5, M6) were intravenously administered 3 times per week without or with a dose of rHuEPO 2730 IU/0.1 ml/kg. After 4 weeks rHuEPO treatment, spleen was removed for RNA isolation. Splenic gene expression was assessed using Affymetrix U133A 2.0 arrays containing 18,400 transcripts and variants, including 14,500 well-characterized human genes. Gene expression pattern was very different between individuals even in same treatment. In rHuEPO treated groups showed number of genes were up- or down-regulated (M4: 79: M5: 48; M6: 73 genes). Six genes (epidermal growth factor receptor, calgranulin A, estrogen receptor binding site associated antigen, matrix metalloproteinase 19, zinc finger and BTB domain containing 16, progestin and adipoQ receptor) were commonly expressed in rHuEPO treated group. The different individual response could be major considering factor in monkey experiment. Further study is needed to clarify the different individual response to rHuEPO in molecular level. This study will be valuable in the fundamental understanding and validation of molecular toxicology for bio-generic drugs including rHuEPO in cynomolgus monkey.

Secretory Production of Recombinant Urokinase Kringle Domain in Pichia pastoris

  • Kim, Hyun-Kyung;Hong, Yong-Kil;Park, Hyo-Eun;Hong, Sung-Hee;Joe, Young-Ae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.591-597
    • /
    • 2003
  • Human urokinase kringle domain, sharing homology with angiostatin kringles, has been shown to be an inhibitor of angiogenesis, which can be used for the treatment of cancer, rheumatoid arthritis, psoriasis, and retinopathy. Here, the expression of the kringle domain of urokinase (UK1) as a secreted protein in high levels is reported. UK1 was expressed in the methylotrophic yeast Pichia pastoris GS115 by fusion of the cDNA spanning from Ser47 to Lys135 to the secretion signal sequence of ${\alpha}-factor$ prepro-peptide. In a flask culture, the secreted UK1 reached about 1 g/l level after 120h of methanol induction and was purified to homogeneity by ion-exchange chromatography. Amino-terminal sequencing of the purified UK1 revealed that it was cleaved at the Ste13 signal cleavage site. The molecular mass of UK1 was determined to be 10,297.01 Da. It was also confirmed that the purified UK1 inhibited endothelial cell proliferation stimulated by basic fibroblast growth factor, vascular endothelial growth factor, or epidermal growth factor, in a dose-dependent manner. These results suggest that a P. pastoris sytem can be employed to obtain large amounts of soluble and active UK1.