• 제목/요약/키워드: Recombinant hormone

검색결과 148건 처리시간 0.025초

Reproductive Functions in Nili-Ravi Buffaloes after Short Term Treatment with Recombinant Bovine Somatotropin Hormone

  • Usmani, R.H.;Athar, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권2호
    • /
    • pp.229-232
    • /
    • 1997
  • Effects of short-term treatment with somidobove (recombinantly produced bovine somatotropin, BST) on estrous cyclicity and fertility were studied in dairy buffaloes. Twenty buffaloes of Nili-Ravi breed calving during the same season were assigned to either control (n=8) or treated group (n=12). The buffaloes of treated group received single infection (prolonged release) of 320 mg of somidobove on day-60 postpartum. The mean values for interval to first postpartum estrus, first service conception rate, services per conception, service period and calving interval for the treated group were 96.4 days, 66.7%, 1.70, 164 days and 473 days, respectively. The corresponding values for the control group were 92.5 days, 62.5%, 1.87, 135 days and 439 days. Means of all variables did not differ between control and treated group (p > 0.05). Three buffaloes of the control and four buffaloes of the treated group did not conceive at first service. Out of these, two buffaloes of control and one buffalo of treated group exhibited normal estrous cycles. It is concluded from these data that short term BST-treatment has no adverse effect on reproductive functions of dairy buffaloes.

1-Aminocyclopropane-1-Carboxylate Deaminase from Pseudomonas fluorescens Promoting the Growth of Chinese Cabbage and Its Polyclonal Antibody

  • Soh, Byoung Yul;Lee, Gun Woong;Go, Eun Byeul;Kim, Byeo-Ri;Lee, Kui-Jae;Chae, Jong-Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권5호
    • /
    • pp.690-695
    • /
    • 2014
  • Bacterial 1-aminocyclopropane-1-carboxlyate (ACC) deaminase (AcdS) is an enzyme that cleaves ACC, a precursor of the plant hormone ethylene, into ${\alpha}$-ketobutyrate and ammonia. The acdS gene was cloned from Pseudomonas fluorescens, which was capable of improving the seedling of Chinese cabbage under salinity condition. The recombinant AcdS (rAcdS) exhibited optimal activity at pH 8.5 and $30^{\circ}C$. Strong activity was sustained at up to 100 mM NaCl. The polyclonal anti-P. fluorescens AcdS antibody was produced in a rabbit that had been immunized with the purified rAcdS. This antibody successfully recognized the homologous antigens derived from the total proteins of isolated plant growth-promoting microorganisms. A statistically significant correlation was observed between the intensity of hybridization signal and AcdS activity measured by a biochemical method, suggesting its application as a useful indicator for active deaminases.

hEPO 유전자의 유선조직 특이적 발현에 대한 In Vitro 검정 (In Vitro Assay of Mammary Gland Tissue Specific hEPO Gene Expression)

  • 구본철;권모선;김태완
    • Reproductive and Developmental Biology
    • /
    • 제40권1호
    • /
    • pp.7-13
    • /
    • 2016
  • Effectiveness of transgene transfer into genome is crucially concerned in mass production of the bio-pharmaceuticals using genetically modified transgenic animals as a bioreactor. Recently, the mammary gland has been considered as a potential bioreactor for the mass production of the bio-pharmaceuticals, which appears to be capable of appropriate post-translational modifications of recombinant proteins. The mammary gland tissue specific vector system may be helpful in solving serious physiological disturbance problems which have been a major obstacle in successful production of transgenic animals. In this study, to minimize physiological disturbance caused by constitutive over-expression of the exogenous gene, we constructed new retrovirus vector system designed for mammary gland-specific expression of the hEPO gene. Using piggyBac vector system, we designed to express hEPO gene under the control of mammary gland tissue specific and lactogenic hormonal inducible goat ${\beta}$-casein or mouse Whey Acidic Protein (mWAP) promoter. Inducible expression of the hEPO gene was confirmed using RT-PCR and ELISA in the mouse mammary gland cells treated with lactogenic hormone. We expect the vector system may optimize production efficiency of transgenic animal and reduce the risk of global expression of transgene.

Generation of Transgenic Mice with Overexpression of Mouse Resistin

  • Lee, H. T.;J. R. Chun.;K. S. Chung
    • 한국가축번식학회지
    • /
    • 제26권4호
    • /
    • pp.321-328
    • /
    • 2002
  • The hormone resistin is associated with type II diabetes mellitus in rodent model. Resistin impairs glucose tolerance and insulin action. A new class of anti-diabetic drugs were called thiazolidinediones (TZDs) downreguates a resistin. Resistin gene expression is induced during adipocyte differentiation and resistin polypeptide is secreted by adipocytes. But, the correlation between increased adiposity and resistin remains unknown. The objectives of this study was to clone a mouse resistin CDNA and to generate transgenic mice overexpressing mouse resistin gene. The pCMV-mus/resistin gene was prepared from previous recombinant pTargeT$^{TM}$-mus/resistin by digestion of Bgl II, and has used for microin- jection into pronuclei of one cell embryos. Mouse resistin expression was detected in transgenic F$_1$mice by RT-PCR. The transgenic mouse with resistin gene expression has heavier body weight which was measured higher level of plasma glucose than that of normal mouse. And in diet-induced experiments, in fasting group, resistin expression was higher than that of re-feeding group. This result demonstrates that the resistin gene overexpressing mice may be became to obesity and be useful as an animal disease model to be diabetes caused by insulin resistance of resistin.n.

Protein Drug Oral Delivery: The Recent Progress

  • Lee, Hye-J.
    • Archives of Pharmacal Research
    • /
    • 제25권5호
    • /
    • pp.572-584
    • /
    • 2002
  • Rapid development in molecular biology and recent advancement in recombinant technology increase identification and commercialization of potential protein drugs. Traditional forms of administrations for the peptide and protein drugs often rely on their parenteral injection, since the bioavailability of these therapeutic agents is poor when administered nonparenterally. Tremendous efforts by numerous investigators in the world have been put to improve protein formulations and as a result, a few successful formulations have been developed including sustained-release human growth hormone. For a promising protein delivery technology, efficacy and safety are the first requirement to meet. However, these systems still require periodic injection and increase the incidence of patient compliance. The development of an oral dosage form that improves the absorption of peptide and especially protein drugs is the most desirable formulation but one of the greatest challenges in the pharmaceutical field. The major barriers to developing oral formulations for peptides and proteins are metabolic enzymes and impermeable mucosal tissues in the intestine. Furthermore, chemical and conformational instability of protein drugs is not a small issue in protein pharmaceuticals. Conventional pharmaceutical approaches to address these barriers, which have been successful with traditional organic drug molecules, have not been effective for peptide and protein formulations. It is likely that effective oral formulations for peptides and proteins will remain highly compound specific. A number of innovative oral drug delivery approaches have been recently developed, including the drug entrapment within small vesicles or their passage through the intestinal paracellular pathway. This review provides a summary of the novel approaches currently in progress in the protein oral delivery followed by factors affecting protein oral absorption.

Management of Osteoporosis Medication after Osteoporotic Fracture

  • Young Kwang Oh;Nam Hoon Moon;Won Chul Shin
    • Hip & pelvis
    • /
    • 제34권4호
    • /
    • pp.191-202
    • /
    • 2022
  • The aim of this study was to provide helpful information for use in selection of an appropriate medication after osteoporotic fractures through conduct of a literature review. In addition, a review of the recommendations of several societies for prevention of subsequent fractures was performed and the appropriate choice of medication for treatment of atypical femur fractures was examined. Clinical perspective was obtained and an updated search of literature was conducted across PubMed and MEDLINE and relevant articles were selected. The articles were selected manually according to relevance, and the references for identified articles and reviews were also evaluated for relevance. The following areas are reviewed: Commonly prescribed osteoporosis medications: BPs (bisphosphonates), denosumab, and SERMs (selective estrogen receptor modulators) in antiresorptive medications and recombinant human parathyroid hormone teriparatide, recently approved Romosuzumab in anabolic agents, clinical practice guidelines for the management of osteoporosis, osteoporotic fracture, and atypical femur fracture. Most medications for treatment of osteoporosis do not delay fracture healing and the positive effect of teriparatide on fracture healing has been confirmed. In cases where an osteoporotic fracture is diagnosed, risk assessment should be performed for selection of very high-risk patients in order to prevent subsequent fractures, and administration of anabolic agents is recommended.

난포자극호르몬이 인간의 자궁 기질세포의 유전자 발현 양상에 미치는 영향 (Alteration of Gene Expressions in Human Endometrial Stromal Cells by Exogeneous FSH Treatments)

  • 최혜원;전진현;이형송;홍인선;강경선;궁미경
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권4호
    • /
    • pp.217-223
    • /
    • 2004
  • Objective: To evaluate the effects of recombinant FSH (rFSH) and urinary FSH (uFSH) on the gene expressions of human endometrial stromal cells in vitro. Methods: Endometrial tissue was obtained from a pre-menopausal women undergoing hysterectomy. Primary endometrial stromal cells were isolated and in vitro cultured with FBS-free DMEM/F-12 containing 0, 10, 100, and 1, 000 mIU/ml of rFSH and uFSH for 48 hours, respectively. Total RNA was extracted from the cultured cells and subjected to real time RT-PCR for the quantitative analysis of progesterone receptor (PR), estrogen receptor $\alpha/\beta$ (ER-$\alpha/\beta$), cyclooxygenase 2 (Cox-2), leukemia inhibitory factor (LIF), homeobox A10-1 and -2 (HoxA10-1/-2). Results: Both hormone treatments slightly increased (< 3 folds) the expressions of PR, ER-$\beta$ and HoxA10-1/-2 gene. However, ER-$\alpha$ expression was increased up to five folds by treatments of both FSH for 48 hours. The LIF expression by the 10 mIU/ml of uFSH for 12 hours was significantly higher than that of rFSH (p<0.01). After 24 hours treatment of two kinds of hormones, the expression patterns of LIF were similar. The 100 and 1, 000 mIU/ml of rFSH induced significantly higher amount of Cox-2 expression than those of uFSH, respectively (p<0.05). Conclusion: This study represents no adversely effect of exogeneous gonadotropins, rFSH and uFSH, on the expression of implantation related genes. We suggest that rFSH is applicable for the assisted reproductive technology without any concern on the endometrial receptivity.

Lactobacillus casei Secreting ${\alpha}$-MSH Induces the Therapeutic Effect on DSS-Induced Acute Colitis in Balb/c Mice

  • Yoon, Sun-Woo;Lee, Chul-Ho;Kim, Jeong-Yoon;Kim, Jie-Youn;Sung, Moon-Hee;Poo, Har-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권12호
    • /
    • pp.1975-1983
    • /
    • 2008
  • The neuropeptide ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) has anti-inflammatory property by down regulating the expressions of proinflammatory cytokines. Because ${\alpha}$-MSH elicits the anti-inflammatory effect in various inflammatory disease models, we examined the therapeutic effect of oral administration of recombinant Lactobacillus casei, which secretes ${\alpha}$-MSH (L. casei-${\alpha}$-MSH), on dextran sulfate sodium (DSS)-induced colitis in Balb/c mice. Thus, we constructed the ${\alpha}$-MSH-secreting Lactobacillus casei by the basic plasmid, pLUAT-ss, which was composed of a PldhUTLS promoter and ${\alpha}$-amylase signal sequence from Streptococcus bovis strain. Acute colitis was induced by oral administration of 5% DSS in drinking water for 7 days. To investigate the effect of L. casei-${\alpha}$-MSH on the colitis, L. casei or L. casei-${\alpha}$-MSH was orally administered for 7 days and their effects on body weight, mortality rate, cytokine production, and tissue myeloperoxidase (MPO) activity were observed. Administration of L. casei-${\alpha}$-MSH reduced the symptom of acute colitis as assessed by body weight loss (DSS alone: $14.45{\pm}0.2\;g$; L. casei-${\alpha}$-MSH: $18.2{\pm}0.12\;g$), colitis score (DSS alone: $3.6{\pm}0.4$; L. casei-${\alpha}$-MSH: $1.4{\pm}0.6$), MPO activity (DSS alone: $42.7{\pm}4.5\;U/g$; L. casei-${\alpha}$-MSH: $10.25{\pm}0.5\;U/g$), survival rate, and histological damage compared with the DSS alone mice. L. casei-${\alpha}$-MSH-administered entire colon showed reduced in vitro production of proinflammatory cytokines and $NF-{\kappa}B$ activation. The ${\alpha}$-MSH-secreting recombinant L. casei showed significant anti-inflammatory effects in the murine model of acute colitis and suggests a potential therapeutic role for this agent in clinical inflammatory bowel diseases.

Macrophage Colony-Stimulating Factor와 Osteoclast Differentiation Factor로 분화 유도된 생쥐 파골세포에서 Vitamin D 및 수종의 싸이토카인 수용체의 발현 (Expression of receptors of Vitamin D and cytokines in osteoclasts differentiated by M-CSF and ODF)

  • 성수미;엄흥식;고성희;우경미;장범석
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.865-873
    • /
    • 2002
  • The primary cause of tooth loss after 30 years of age is periodontal disease. Destruction of alveolar bone by periodontal disease is done by bone resorbing activity of osteoclasts. Understanding differentiation and activation mechanism of osteoclasts is essential for controling periodontal disease. The purpose of this study is to identify the possible effects of Vitamin D and cytokines affecting osteoclasts and its precursor cells. Four to six week-old mice were killed and humerus, radius, tibia and femur were removed aseptically and washed two times with Hank's solution containing penicillin-streptomycin and then soft tissue were removed. Bone marrow cells were collected by 22 gauge needle. Cells were cultured in Hank's solution containing 1 mg/ml type II collagenase, 0.05% trypsin, 41mM EDTA. Supernatant solution was removed 5 times after 15 minutes of digestion with above mentioned enzyme solution, and remained bone particles were maintained in alpha-MEM for 15 minutes and $4^{\circ}C$ temperature. Bone particles were agitated for 1 minute and supernatant solution containing osteoclast precursor cells were filtrated with cell stainer. These separated osteoclast precursor cells were dispensed with 100-mm culture dish by $1{\times}10^7$ cells unit and cultured in ${\alpha}$- MEM containing 20 ng/ml recombinant human M-CSF, 30 ng/ml recombinant human soluble osteoclast differentiation factor and 10% fetal calf serum for 2 and 7 days. Total RNA of osteoclast precursor cells were extracted using RNeasy kit. One ${\mu}g$ of total RNA was reverse transcribed in $42^{\circ}C$ for 30 minutes using SuperScriptII reverse transcriptase. Expression of transcribed receptors of each hormone and cytokine were traced with 1 ${\mu}l$ of cDNA solution by PCR amplification. Vitamin D receptor WAS found in cells cultured for 7 days. TNF-${\alpha}$ receptor was found in cells cultured for 2 days and amount of receptors were increased by 7 days. IL-1 type I receptor was not found in cells cultured 2 and 7 days. But, IL-1 receptor type II was found in cells cultured for 2 days. TGF-${\alpha},{\beta}$type I receptor was found in cells cultured 2 and 7 days, and amount of receptors were increased by 7 days of culture. These results implies Vitamin D and cytokines can affect osteoclasts directly, and affecting period in differentiation cycle of osteoclasts is different by Vitamin D and cytokines.

돌돔(Oplegnathus fasciatus) somatolactin cDNA의 분석 (Characterization of Somatolactin cDNA from Rock Bream (Oplegnathus fasciatus))

  • 강현실;여인규;이제희
    • 생명과학회지
    • /
    • 제13권6호
    • /
    • pp.805-813
    • /
    • 2003
  • 돌돔 (Oplegnathus fasciatus) SL을 암호화하는 cDNA clone을 뇌하수체로부터 RT-PCR 방법에 의해 획득하였다. 돌돔 SL cDNA의 길이는 1636 bp로서 24개의 아미노산인 signal peptide와 207개 의 aa으로 구성된 mature protein을 암호화하는 696 bp의 open reading frame을 갖고 있다. 또한, 돌돔 SL 아미노산에는 이황화 결합에 관여하는 7개의 시스테인 잔기 $(Cys^{5},\; Cys^{15},\; Cys^{42},\; Cys^{65},\; Cys^{181},\; Cys^{198}\$$Cys^{206})$와 두 개의 potential N-glycosylation site인 $Asn^{121}$$Asn^{153}$을 확인하였다. 돌돔 SL은 goldfish와 channel catfish를 제외한 다른 경골어류 SL에 아미노산 서열은 61.1∼92.6%, 뉴클레오타이드 서열은 63∼92.6%의 일치를 나타낸다. 아미노산 서열 alingment에서 돌돔 SL은 다른 어류 SL에 공통적인 4개의 conserved domain $(A_{SL},\; B_{SL},\; C_{SL}$$D_{SL})$을 갖고 있음을 확인하였다. 이들중 $A_{SL},\; B_{SL}$,과 $D_{SL}$,은 경골어류 growth hormone과 prolactin에도 잘 보존되어 있었다 재조합 돌돔 SL 단백질을 E. coli에서 생산하기 위해 돌돔 SL cDNA를 발현벡터에 클로닝하여 단백질의 발현을 유도하였다 발현된 단백질은 SDS-PAGE에 의해 분자량 약 27 kDa의 재조합 단백질의 발현을 확인하였다.