• Title/Summary/Keyword: Recombinant antibody

Search Result 338, Processing Time 0.031 seconds

Cloning and Expression of Lactadherin Gene from Korean Women (한국 여성의 Lactadherin 유전자 Cloning과 발현 연구)

  • Yom, Heng-Cherl
    • Development and Reproduction
    • /
    • v.11 no.3
    • /
    • pp.253-261
    • /
    • 2007
  • Lactadherin is a glycoprotein of human milk fat globule membrane that binds to mucin and butyrophilin forming the protein complex. Especially, mucin and lactadherin in human milk efficiently protect infants with poor immune functions right after birth from infections by microorganisms and play important roles for their early survival, growth and development. Lactadherin inhibits the propagation and growth of rotavirus that is a global pathogen causing infants' diarrhea. Recently this protein was known to promote neovascularization and its deficiency related to develop Alzheimer's disease. In this study, the basic biochemical and physiological aspects of lactadherin were investigated. Messenger RNAs were isolated from mammary tissues from Korean women patients to clone a 1.2 kb cDNA and sequenced its DNA to determine its amino acid sequences. The cDNA was cloned to express its 43 kD protein in E. coli, which was confirmed by Western blot. The recombinant protein was purified and injected to 2 rabbits to raise antibodies against it. The semi-purified milk fat globule membrane proteins from Korean women was analyzed by Western blot using the rabbit antibody to give 70, 55, 46, 30 kD bands. Also several polymorphism and SNPs of lactadherin gene from Korean women were observed compared with those of Caucasian women.

  • PDF

Cloning and Expression of a Yeast Cell Wall Hydrolase Gene (ycl) from Alkalophilic Bacillus alcalophilus subsp. YB380

  • Ohk, Seung-Ho;Yeo, Ik-Hyun;Yu, Yun-Jung;Kim, Byong-Ki;Bai, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.508-514
    • /
    • 2001
  • A stuructural gene (ycl) encoding novel yeast cell wall hydrolase, YCL, was cloned from alkalophilic Bacillus alcalophilus subsp. YB380 by PCR, and transformed into E. coli JM83. Based on the N-terminal and internal amino acid sequences of the enzyme, primers were designed for PCr. The positive clone that harbors 1.8 kb of the yeast cell wall hydrolase gene was selected by the colony hybridization method with a PCR fragment as a probe. According to the computer analysis, this gene contained a 400-base-paired N-terminal domain of the enzyme. Based on nucletide homology of the cloned gene, a 850 bp fragment was amplified and the C-terminal domain of the enzyme was sequenced. With a combination of the two sequences, a full nucleotide sequence for YCL was obtained. This gene, ycl, consisted of 1,297 nucleotides with 27 nucleotides with 27 amino acids of signal sequence, 83 redundant amino acids of prosequence, and 265 amino acids of the mature protein. This gene was then cloned into the pJH27 shuttle vector and transformed into the Bacillus subtilis DB104 to express the enzyme. It was confirmed that the expressed cell wall hydrolase that was produced by Bacillus subtilis DB104 was the same as that of the donor strain, by Western blot using polyclonal antibody (IgY) prepared from White Leghorn hen. Purified yeast cell wall hydrolase and expressed recombinant protein showed a single band at the same position in the Western blot analysis.

  • PDF

Effect of 1,3-Benzopyrone on Chemotactic Activity of Peripheral Blood Leukocytes in the Dog (1,2-benzopyrone이 개 말초혈액 백혈구의 유주활성에 미치는 영향)

  • Kim Jee-hyun;Kang Ji-houn;Yang Mhan-pyo
    • Journal of Veterinary Clinics
    • /
    • v.22 no.2
    • /
    • pp.84-89
    • /
    • 2005
  • This study was undertaken to examine whether 1,2-benzopyrone affects on chemotactic activity of canine peripheral blood leukocytes. A modified Boyden chamber method was sed on chemotaxis evaluation. The direct treatments of 1,2-benzopyrone showed no ffects on the chemotaxis of peripheral blood mononuclear cells (PBMCs) and olymorphonuclear cells (PMNs). But chemotaxis of PMN was remarkably enhanced by ulture supernatant from PBMC but not PMN treated with 1,2-benzopyrone. Similarly, it as also increased by recombinant (r) interleukin (lL)­8. This chemotactic activity of MN was inhibited by addition of anti-rIL-8 polyclonal antibody. The chemotaxis of PBMC was not enhanced by culture supernatant from either PBMC or PMN treated with 1,2-benzopyrone. Therefore, these results suggested that the chemotactic activity of PMN ay be mainly mediated by IL-8-like factor(s) produced from PBMC treated with ,2-benzopyrone.

Zinc Enhances Neutrophil Extracellular Trap Formation of Porcine Peripheral Blood Polymorphonuclear Cells through Tumor Necrosis Factor-Alpha from Peripheral Blood Mononuclear Cells

  • Heo, Ju-Haeng;Kim, Hakhyun;Kang, Byeong-Teck;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.37 no.5
    • /
    • pp.249-254
    • /
    • 2020
  • Neutrophil extracellular trap (NET) formation is an immune response for the invasion of microbes. The purpose of this study is to examine the effect of zinc on NET formation of porcine peripheral blood polymorphonuclear cells (PMNs). The NET formation of PMNs was measured by fluorescence microplate reader. The production of tumor necrosis factor (TNF)-α in the culture supernatants from zinc-treated peripheral blood mononuclear cells (PBMCs) was measured by enzyme-linked immunosorbent assay (ELISA). Zinc itself did not have no effect on NET formation. However, the NET formation of PMNs was increased by culture supernatants from PBMCs treated with zinc. Also, the NET formation of PMNs was increased by recombinant porcine (rp) TNF-α. The production of TNF-α in PBMCs culture supernatants was shown to increase upon zinc treatments. These NET formations of PMNs increased by either culture supernatant from PBMCs treated with zinc or rpTNF-α were inhibited by treatment of anti-rpTNF-α polyclonal antibody (pAb). These results suggested that zinc has an immunostimulating effect on the NET formation of PMNs, which is mediated by TNF-α released from zinc-treated PBMCs. Therefore, zinc may play an important role for NET formation in the defense of porcine inflammatory diseases.

Production of toxoid and monoclonal antibody by mutation of toxin gene from Escherichia coli O157: H7 for detection of low levels of the toxin I. Expression of toxoid by mutagenesis of verotoxin gene (대장균 O157:H7의 독소 생성 유전자의 변이에 의한 변성독소 생산 및 미량독소 검출을 위한 단클론성 항체생산 I. 독소 생성 유전자의 변이에 의한 변성독소의 발현)

  • Kim, Yong-hwan;Kang, Ho-jo;Kim, Sang-hyun;Lee, Eun-joo;Cha, In-ho;Lee, Woo-won
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.2
    • /
    • pp.189-195
    • /
    • 2001
  • Single base substitution and deletion mutation have been introducted into the verotoxin 2 (VT2)A subunit gene from O157:H7 isolates to reduce cytotoxicity of VT2 and the cytotoxicity between wild type toxin and mutant toxoid were compared. A M13-derived recombinant plasmid pEP19RF containing a 940bp EcoRI-PstI fragment of VT2A gene was constructed for oligonucleotide-directed mutagenesis. The duoble mutant pDOEX was constructed by point and deletion mutation of two different highly conserved regions of VT2A encoding active site cleft of enzymatic domain. The key residue, Glu 167(GAA) and the pentamer(WGRIS) consisting of the enzymatic domain were replaced by ASP(GAC) and completely deleted in nucleotide sequence analysis of mutant, respectively. In the comparision of vero cell cytotoxicity between wide type toxin and toxoid from mutant, the wild type toxin expressed cytotoxicity in dilution of $10^{-6}$, but the toxid from mutant did not show cytotoxicity to vero cells.

  • PDF

TRPC4 Is an Essential Component of the Nonselective Cation Channel Activated by Muscarinic Stimulation in Mouse Visceral Smooth Muscle Cells

  • Lee, Kyu Pil;Jun, Jae Yeoul;Chang, In-Youb;Suh, Suk-Hyo;So, Insuk;Kim, Ki Whan
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.435-441
    • /
    • 2005
  • Classical transient receptor potential channels (TRPCs) are thought to be candidates for the nonselective cation channels (NSCCs) involved in pacemaker activity and its neuromodulation in murine stomach smooth muscle. We aimed to determine the role of TRPC4 in the formation of NSCCs and in the generation of slow waves. At a holding potential of -60 mV, $50{\mu}M$ carbachol (CCh) induced $I_{NSCC}$ of amplitude [$500.8{\pm}161.8pA$ (n = 8)] at -60 mV in mouse gastric smooth muscle cells. We investigated the effects of commercially available antibodies to TRPC4 on recombinant TRPC4 expressed in HEK cells and CCh-induced NSCCs in gastric smooth muscle cells. TRPC4 currents in HEK cells were reduced from $1525.6{\pm}414.4pA$ (n = 8) to $146.4{\pm}83.3pA$ (n = 10) by anti-TRPC4 antibody and $I_{NSCC}$ amplitudes were reduced from $230.9{\pm}36.3pA$ (n = 15) to $49.8{\pm}11.8pA$ (n = 9). Furthermore, $I_{NSCC}$ in the gastric smooth muscle cells of TRPC4 knockout mice was only $34.4{\pm}10.4pA$ (n = 8) at -60 mV. However, slow waves were still present in the knockout mice. Our data suggest that TRPC4 is an essential component of the NSCC activated by muscarinic stimulation in the murine stomach.

Cloning, Purification, and Characterization of Recombinant Human Extracellular Superoxide Dismutase in SF9 Insect Cells

  • Shrestha, Pravesh;Yun, Ji-Hye;Kim, Woo Taek;Kim, Tae-Yoon;Lee, Weontae
    • Molecules and Cells
    • /
    • v.39 no.3
    • /
    • pp.242-249
    • /
    • 2016
  • A balance between production and degradation of reactive oxygen species (ROS) is critical for maintaining cellular homeostasis. Increased levels of ROS during oxidative stress are associated with disease conditions. Antioxidant enzymes, such as extracellular superoxide dismutase (EC-SOD), in the extracellular matrix (ECM) neutralize the toxicity of superoxide. Recent studies have emphasized the importance of EC-SOD in protecting the brain, lungs, and other tissues from oxidative stress. Therefore, EC-SOD would be an excellent therapeutic drug for treatment of diseases caused by oxidative stress. We cloned both the full length (residues 1-240) and truncated (residues 19-240) forms of human EC-SOD (hEC-SOD) into the donor plasmid pFastBacHTb. After transposition, the bacmid was transfected into the Sf9-baculovirus expression system and the expressed hEC-SOD purified using FLAG-tag. Western blot analysis revealed that hEC-SOD is present both as a monomer (33 kDa) and a dimer (66 kDa), as detected by the FLAG antibody. A water-soluble tetrazolium (WST-1) assay showed that both full length and truncated hEC-SOD proteins were enzymatically active. We showed that a potent superoxide dismutase inhibitor, diethyldithiocarbamate (DDC), inhibits hEC-SOD activity.

Analysis of Immune Responses Against Nucleocapsid Protein of the Hantaan Virus Elicited by Virus Infection or DNA Vaccination

  • Woo Gyu-Jin;Chun Eun-Young;Kim Keun Hee;Kim Wankee
    • Journal of Microbiology
    • /
    • v.43 no.6
    • /
    • pp.537-545
    • /
    • 2005
  • Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used $H-2K^b$ restricted T-cell epitopes of NP. The NP-specific $CD8^+$ T cell response was analyzed using a $^{51}Cr-release$ assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific $CD8^+$ T cell response at eight days after infection. We also found that several different methods to check the NP-specific $CD8^+$ T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited $2\~4$ weeks after immunization and maximized at $6\~8$ weeks. NP-specific $CD8^+$ T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.

Glyceraldehyde-3-Phosphate Dehydrogenase, an Immunogenic Streptococcus equi ssp. zooepidemicus Adhesion Protein and Protective Antigen

  • Fu, Qiang;Wei, Zigong;Liu, Xiaohong;Xiao, Pingping;Lu, Zhaohui;Chen, Yaosheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.579-585
    • /
    • 2013
  • Streptococcus equi ssp. zooepidemicus (Streptococcus zooepidemicus, SEZ) is an important pathogen associated with opportunistic infections of a wide range of species, including pigs and humans. The absence of a suitable vaccine makes it difficult to control SEZ infection. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been previously identified as an immunogenic protein using immunoproteomic techniques. In the present study, we confirmed that the sequence of GAPDH was highly conserved with other Streptococcus spp. The purified recombinant GAPDH could elicit a significant humoral antibody response in mice and confer significant protection against challenge with a lethal dose of SEZ. GAPDH could adhere to the Hep-2 cells, confirmed by flow cytometry, and inhibit adherence of SEZ to Hep-2 cells in an adherence inhibition assay. In addition, real-time PCR demonstrated that GAPDH was induced in vivo following infection of mice with SEZ. These suggest that GAPDH could play an important role in the pathogenesis of SEZ infection and could be a target for vaccination against SEZ.

Expression of Human Lactoferricin in HC11 Cells (HC11 세포에서 인체 락토페리신의 발현)

  • Nam, Myoung-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.92-98
    • /
    • 2001
  • Lactofenicin is an antibacterial peptide fragment (about 5 kD) derived from lactoferrin (80 kD) that displays the various biological functions. The production of a human lactoferricin (Lactoferricin H) in mouse HC11 mammary epithelial cells was achieved by placing its cDNA under the control of the bovine ${\beta}$-casein gene. To express lactoferricin H in this cell culture system, constructed a hybride-splice signal consisting of bovine ${\beta}$-casein intron I and rabbit ${\beta}$-globin intron II, and a DNA fragment spanning intron 8 of the bovine ${\beta}$-casein gene. Expression of lactofenicin H from this expression vector was identified by RT-PCR, northern and dot blot analysis. RT-PCR using total RNA of HC11 cells transfected with pBL1-cin expression vector yielded a product identified as having a size of the 150bp. Northern blot analysis was identified about 2.3 kb. In dot blot analysis, recombinant lactofenicin H was recognized with anti-human lactofrrnin polyclonal antibody.

  • PDF